Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

2023-05-09-distilbart_xsum_6_6_en #13788

74 changes: 74 additions & 0 deletions docs/_posts/prabod/2023-05-09-bart_large_cnn_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
---
layout: model
title: BART (large-sized model), fine-tuned on CNN Daily Mail
author: John Snow Labs
name: bart_large_cnn
date: 2023-05-09
tags: [bart, summarization, cnn, text_to_text, en, open_source, tensorflow]
task: Summarization
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
engine: tensorflow
annotator: BartTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

BART model pre-trained on English language, and fine-tuned on [CNN Daily Mail](https://huggingface.co/datasets/cnn_dailymail). It was introduced in the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Lewis et al. and first released in [this repository (https://github.com/pytorch/fairseq/tree/master/examples/bart).

Disclaimer: The team releasing BART did not write a model card for this model so this model card has been written by the Hugging Face team.

### Model description

BART is a transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text.

BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). This particular checkpoint has been fine-tuned on CNN Daily Mail, a large collection of text-summary pairs.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bart_large_cnn_en_4.4.2_3.0_1683645394389.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bart_large_cnn_en_4.4.2_3.0_1683645394389.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

You can use this model for text summarization.

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
bart = BartTransformer.pretrained("bart_large_cnn") \
.setTask("summarize:") \
.setMaxOutputLength(200) \
.setInputCols(["documents"]) \
.setOutputCol("summaries")
```
```scala
val bart = BartTransformer.pretrained("bart_large_cnn")
.setTask("summarize:")
.setMaxOutputLength(200)
.setInputCols("documents")
.setOutputCol("summaries")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bart_large_cnn|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|975.3 MB|
86 changes: 86 additions & 0 deletions docs/_posts/prabod/2023-05-09-distilbart_cnn_12_6_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
---
layout: model
title: Abstractive Summarization by BART - DistilBART CNN
author: John Snow Labs
name: distilbart_cnn_12_6
date: 2023-05-09
tags: [bart, summarization, cnn, distill, text_to_text, en, open_source, tensorflow]
task: Summarization
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
engine: tensorflow
annotator: BartTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

"BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension Transformer" The Facebook BART (Bidirectional and Auto-Regressive Transformer) model is a state-of-the-art language generation model that was introduced by Facebook AI in 2019. It is based on the transformer architecture and is designed to handle a wide range of natural language processing tasks such as text generation, summarization, and machine translation.

This pre-trained model is DistilBART fine-tuned on the Extreme Summarization (CNN) Dataset.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilbart_cnn_12_6_en_4.4.2_3.0_1683644937231.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilbart_cnn_12_6_en_4.4.2_3.0_1683644937231.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
bart = BartTransformer.pretrained("distilbart_cnn_12_6") \
.setTask("summarize:") \
.setMaxOutputLength(200) \
.setInputCols(["documents"]) \
.setOutputCol("summaries")
```
```scala
val bart = BartTransformer.pretrained("distilbart_cnn_12_6")
.setTask("summarize:")
.setMaxOutputLength(200)
.setInputCols("documents")
.setOutputCol("summaries")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|distilbart_cnn_12_6|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|870.4 MB|

## Benchmarking

```bash
### Metrics for DistilBART models
| Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L |
|:---------------------------|------------:|----------------------:|----------:|----------:|----------:|
| distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 |
| distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 |
| distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 |
| distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 |
| bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 |
| distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 |
| bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 |
| distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 |
| distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 |
| distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
```
86 changes: 86 additions & 0 deletions docs/_posts/prabod/2023-05-09-distilbart_cnn_6_6_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
---
layout: model
title: Abstractive Summarization by BART - DistilBART CNN
author: John Snow Labs
name: distilbart_cnn_6_6
date: 2023-05-09
tags: [bart, summarization, cnn, distil, text_to_text, en, open_source, tensorflow]
task: Summarization
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
engine: tensorflow
annotator: BartTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

"BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension Transformer" The Facebook BART (Bidirectional and Auto-Regressive Transformer) model is a state-of-the-art language generation model that was introduced by Facebook AI in 2019. It is based on the transformer architecture and is designed to handle a wide range of natural language processing tasks such as text generation, summarization, and machine translation.

This pre-trained model is DistilBART fine-tuned on the Extreme Summarization (CNN) Dataset.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilbart_cnn_6_6_en_4.4.2_3.0_1683645206157.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilbart_cnn_6_6_en_4.4.2_3.0_1683645206157.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
bart = BartTransformer.pretrained("distilbart_cnn_6_6") \
.setTask("summarize:") \
.setMaxOutputLength(200) \
.setInputCols(["documents"]) \
.setOutputCol("summaries")
```
```scala
val bart = BartTransformer.pretrained("distilbart_cnn_6_6")
.setTask("summarize:")
.setMaxOutputLength(200)
.setInputCols("documents")
.setOutputCol("summaries")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|distilbart_cnn_6_6|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|551.9 MB|

## Benchmarking

```bash
### Metrics for DistilBART models
| Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L |
|:---------------------------|------------:|----------------------:|----------:|----------:|----------:|
| distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 |
| distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 |
| distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 |
| distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 |
| bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 |
| distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 |
| bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 |
| distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 |
| distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 |
| distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
```
91 changes: 91 additions & 0 deletions docs/_posts/prabod/2023-05-09-distilbart_xsum_12_6_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
---
layout: model
title: Abstractive Summarization by BART - DistilBART XSUM
author: John Snow Labs
name: distilbart_xsum_12_6
date: 2023-05-09
tags: [bart, summarization, text_to_text, xsum, distil, en, open_source, tensorflow]
task: Summarization
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
engine: tensorflow
annotator: BartTransformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

"BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension Transformer" The Facebook BART (Bidirectional and Auto-Regressive Transformer) model is a state-of-the-art language generation model that was introduced by Facebook AI in 2019. It is based on the transformer architecture and is designed to handle a wide range of natural language processing tasks such as text generation, summarization, and machine translation.

This pre-trained model is DistilBART fine-tuned on the Extreme Summarization (XSum) Dataset.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/distilbart_xsum_12_6_en_4.4.2_3.0_1683644681912.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/distilbart_xsum_12_6_en_4.4.2_3.0_1683644681912.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
bart = BartTransformer.pretrained("distilbart_xsum_12_6") \
.setTask("summarize:") \
.setMaxOutputLength(200) \
.setInputCols(["documents"]) \
.setOutputCol("summaries")
```
```scala
val bart = BartTransformer.pretrained("distilbart_xsum_12_6")
.setTask("summarize:")
.setMaxOutputLength(200)
.setInputCols("documents")
.setOutputCol("summaries")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|distilbart_xsum_12_6|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|733.7 MB|

## References

https://huggingface.co/sshleifer/distilbart-xsum-12-6

## Benchmarking

```bash
### Metrics for DistilBART models

| Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L |
|:---------------------------|------------:|----------------------:|----------:|----------:|----------:|
| distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 |
| distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 |
| distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 |
| distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 |
| bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 |
| distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 |
| bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 |
| distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 |
| distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 |
| distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
```
Loading