-
Notifications
You must be signed in to change notification settings - Fork 718
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add model 2024-01-10-mpnet_sequence_classifier_ukr_message_en (#14131)
Co-authored-by: DevinTDHa <duc.hatrung95@gmail.com>
- Loading branch information
1 parent
2551e9d
commit f242148
Showing
1 changed file
with
127 additions
and
0 deletions.
There are no files selected for viewing
127 changes: 127 additions & 0 deletions
127
docs/_posts/DevinTDHa/2024-01-10-mpnet_sequence_classifier_ukr_message_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
--- | ||
layout: model | ||
title: MPNet Sequence Classification - UKR Message Classifier | ||
author: John Snow Labs | ||
name: mpnet_sequence_classifier_ukr_message | ||
date: 2024-01-10 | ||
tags: [en, mpnet, sequence, classification, open_source, onnx] | ||
task: Text Classification | ||
language: en | ||
edition: Spark NLP 5.2.3 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: onnx | ||
annotator: MPNetForSequenceClassification | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
MPNet Sequence Classification imported from huggingface. | ||
|
||
Originally a SetFit model, reference: https://huggingface.co/rodekruis/sml-ukr-message-classifier | ||
|
||
## Predicted Entities | ||
|
||
`ANOMALY`, `ARMY`, `CHILDREN`, `CONNECTIVITY`, `CONNECTWITHREDCROSS`, `EDUCATION`, `FOOD`, `GOODSSERVICES`, `HEALTH`, `INCLUSIONCVA`, `LEGAL`, `MONEY/BANKING`, `NFINONFOODITEMS`, `OTHERPROGRAMSOTHERNGOS`, `PARCEL`, `PAYMENTCVA`, `PETS`, `PMER/NEWPROGRAMOPERTUNITIES`, `PROGRAMINFO`, `PROGRAMINFORMATION`, `PSSRFL`, `REGISTRATIONCVA`, `SENTIMENT/FEEDBACK`, `SHELTER`, `TRANSLATION/LANGUAGE`, `TRANSPORT/CAR`, `TRANSPORT/MOVEMENT`, `WASH`, `WORK/JOBS` | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpnet_sequence_classifier_ukr_message_en_5.2.3_3.0_1704907644396.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpnet_sequence_classifier_ukr_message_en_5.2.3_3.0_1704907644396.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
import sparknlp | ||
from sparknlp.base import * | ||
from sparknlp.annotator import * | ||
from pyspark.ml import Pipeline | ||
document = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("document") | ||
tokenizer = Tokenizer() \ | ||
.setInputCols(["document"]) \ | ||
.setOutputCol("token") | ||
sequenceClassifier = MPNetForSequenceClassification \ | ||
.pretrained() \ | ||
.setInputCols(["document", "token"]) \ | ||
.setOutputCol("label") | ||
data = spark.createDataFrame([ | ||
["I love driving my car."], | ||
["The next bus will arrive in 20 minutes."], | ||
["pineapple on pizza is the worst 🤮"], | ||
]).toDF("text") | ||
pipeline = Pipeline().setStages([document, tokenizer, sequenceClassifier]) | ||
pipelineModel = pipeline.fit(data) | ||
results = pipelineModel.transform(data) | ||
results.select("label.result").show() | ||
``` | ||
```scala | ||
import com.johnsnowlabs.nlp.base._ | ||
import com.johnsnowlabs.nlp.annotator._ | ||
import org.apache.spark.ml.Pipeline | ||
import spark.implicits._ | ||
|
||
val document = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("document") | ||
|
||
val tokenizer = new Tokenizer() | ||
.setInputCols(Array("document")) | ||
.setOutputCol("token") | ||
|
||
val modelPath = "onnx_exported/rodekruis/sml-ukr-message-classifier" | ||
|
||
val sequenceClassifier = MPNetForSequenceClassification | ||
.loadSavedModel(modelPath, spark) | ||
// .pretrained() | ||
.setInputCols(Array("document", "token")) | ||
.setOutputCol("label") | ||
|
||
val texts: Seq[String] = Seq( | ||
"I love driving my car.", | ||
"The next bus will arrive in 20 minutes.", | ||
"pineapple on pizza is the worst 🤮") | ||
val data = texts.toDF("text") | ||
|
||
val pipeline = new Pipeline().setStages(Array(document, tokenizer, sequenceClassifier)) | ||
val pipelineModel = pipeline.fit(data) | ||
val results = pipelineModel.transform(data) | ||
|
||
results.select("label.result").show() | ||
``` | ||
</div> | ||
|
||
## Results | ||
|
||
```bash | ||
+--------------------+ | ||
| result| | ||
+--------------------+ | ||
| [TRANSPORT/CAR]| | ||
|[TRANSPORT/MOVEMENT]| | ||
| [FOOD]| | ||
+--------------------+ | ||
``` | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|mpnet_sequence_classifier_ukr_message| | ||
|Compatibility:|Spark NLP 5.2.3+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[document, token]| | ||
|Output Labels:|[label]| | ||
|Language:|en| | ||
|Size:|403.5 MB| |