Skip to content

Commit

Permalink
2023-11-08-scibert_finetuned_ner_fl_en (#14058)
Browse files Browse the repository at this point in the history
* Add model 2023-11-08-scibert_finetuned_ner_fl_en

* Add model 2023-11-08-real_estate_financial_ner_en

* Add model 2023-11-08-bertfortokenclassification_en

* Add model 2023-11-08-bert_restore_punctuation_turkish_legacy_tr

* Add model 2023-11-08-aldi_token_di_en

* Add model 2023-11-08-fp_ner_en

* Add model 2023-11-08-elastic_bert_chinese_ner_en

* Add model 2023-11-08-biobert_finetuned_pico_en

* Add model 2023-11-08-bert_base_ner_theseus_bulgarian_bg

* Add model 2023-11-08-rust_bert_base_ner_en

* Add model 2023-11-08-bert_finetuned_ner_v2_sayalik13_en

* Add model 2023-11-08-bert_finetuned_ner_aiventurer_en

* Add model 2023-11-08-swiss_german_sayula_popoluca_model_en

* Add model 2023-11-08-bert_finetuned_ner_ontonotes_en

* Add model 2023-11-08-bert_base_uncased_finetuned_ner_arbert_en

* Add model 2023-11-08-bert_finetuned_ner_xiajun2001_en

* Add model 2023-11-08-bert_base_cased_ner_conll2003_finetuned_ner_en

* Add model 2023-11-08-mbert_bengali_ner_finetuned_ner_en

* Add model 2023-11-08-bert_finetuned_ner_chunfengw_en

* Add model 2023-11-08-rubert_base_lesha17_punctuation_en

* Add model 2023-11-08-bert_based_multilingual_cased_finetuned_lid_xx

* Add model 2023-11-08-sayula_popoluca_ner_tagging_en

* Add model 2023-11-08-bert_base_chinese_finetuned_ner_agdsga_en

* Add model 2023-11-08-archeological_ner_english_en

* Add model 2023-11-08-fairness_lab_hana_ner_en

* Add model 2023-11-08-bert_multilingual_finetuned_xtreme_tamil_ner_xx

* Add model 2023-11-08-bert_finetuned_ner_mpalaval_en

* Add model 2023-11-08-teste_tcc_en

* Add model 2023-11-08-products_ner_en

* Add model 2023-11-08-bert_ner_2_en

* Add model 2023-11-08-bert_tiny_finetuned_finer_accelerate_longer_en

* Add model 2023-11-08-nerkor_hubert_hu

* Add model 2023-11-08-bert_finetuned_ner_yitengm_en

* Add model 2023-11-08-autotrain_ner_8_86129142996_en

* Add model 2023-11-08-bert_finetuned_ner_loganathanspr_en

* Add model 2023-11-08-finance_ner_v0_0_8_finetuned_ner_en

* Add model 2023-11-08-bert_base_uncased_finetuned_ner_kmeans_en

* Add model 2023-11-08-estbert_estonian_subtitles_token_classification_et

* Add model 2023-11-08-bert_base_german_finetuned_ler_de

* Add model 2023-11-08-bert_finetuned_ner_augment_3_en

* Add model 2023-11-08-hana_unbias_ner_classifier_en

* Add model 2023-11-08-bert_finetuned_ner_canliu_en

* Add model 2023-11-08-bert_finetuned_ner_clarechen101_en

* Add model 2023-11-08-bioformer_8l_bc2gm_en

* Add model 2023-11-08-ner_old_en

* Add model 2023-11-08-ner_gdpr_en

* Add model 2023-11-08-bert_finetuned_ner_shadowtwin41_en

* Add model 2023-11-08-biobertpt_all_finetuned_ner_en

* Add model 2023-11-08-bert_finetuned_ner_ishantja_en

* Add model 2023-11-08-bulbert_ner_udep_5epochs_en

* Add model 2023-11-08-biobert_base_cased_v1_2_finetuned_ner_sciarrilli_en

* Add model 2023-11-08-bert_finetuned_ner_joaomonteiro_en

* Add model 2023-11-08-bert_base_tweetner7_2021_en

* Add model 2023-11-08-drone_term_extractor_en

* Add model 2023-11-08-specific_bengali_language_token_classification_model_en

* Add model 2023-11-08-finance_ner_v0_0_1_finetuned_ner_en

* Add model 2023-11-08-bert_finetuned_ner_andersonjas_en

* Add model 2023-11-08-bert_base_uncased_brands_en

* Add model 2023-11-08-swiss_german_stts_sayula_popoluca_model_en

* Add model 2023-11-08-bert_finetuned_requirements_andyuk_en

* Add model 2023-11-08-bert_finetuned_ner_jmoraes_en

* Add model 2023-11-08-scibert_finetuned_ner_v1_en

* Add model 2023-11-08-bert_finetuned_food_en

* Add model 2023-11-08-droner_en

* Add model 2023-11-08-burmese_awesome_wnut_model_bahador0101_en

* Add model 2023-11-08-wobert_bio_en

* Add model 2023-11-08-bert_tiny_finetuned_finer_accelerate_gpu_en

* Add model 2023-11-08-arabert_finetuned_caner_en

* Add model 2023-11-08-bert_finetuned_ner_xinhui_en

* Add model 2023-11-08-bert_base_cased_finetuned_ner_intpc_en

* Add model 2023-11-08-bert_finetuned_ner_mmibrahim2006_en

* Add model 2023-11-08-dark_bert_finetuned_ner1_en

* Add model 2023-11-08-beto_finetuned_fact_es

* Add model 2023-11-08-specific_arabic_language_token_classification_model_en

* Add model 2023-11-08-toxicbert_params_en

* Add model 2023-11-08-name_anonymization_akoksal_tr

* Add model 2023-11-08-bert_finetuned_ner_rajknakka_en

* Add model 2023-11-08-marischal_college_hmbert_en

* Add model 2023-11-08-negation_bert_en

* Add model 2023-11-08-uner_muril_ner_en

* Add model 2023-11-08-bert_finetuned_ner_sanjay7178_en

* Add model 2023-11-08-kr_finbert_finetuned_ner_en

* Add model 2023-11-08-sec_bert_base_finetuned_ner_en

* Add model 2023-11-08-bert_finetuned_ner_heek_en

* Add model 2023-11-08-porttagger_tweets_base_en

* Add model 2023-11-08-bert_finetuned_ner_tofunumber1_en

* Add model 2023-11-08-bert_tamil_ta

* Add model 2023-11-08-bert_finetuned_ner_abx_en

* Add model 2023-11-08-bert_base_bangla_ner_en

* Add model 2023-11-08-bert_finetuned_ner_trainer_en

* Add model 2023-11-08-bert_finetuned_ner_marcuslee_en

* Add model 2023-11-08-expanded_multilingual_ner_xx

* Add model 2023-11-08-scideberta_ser_en

* Add model 2023-11-08-bert_finetuned_ner_averageandyyy_en

* Add model 2023-11-08-bert_finetuned_ner_dxiao_en

* Add model 2023-11-08-biobert_mnli_snli_scinli_scitail_mednli_stsb_ncbi_en

* Add model 2023-11-08-greek_legal_bert_v2_finetuned_ner_en

* Add model 2023-11-08-bert_finetuned_ner_torayeff_en

* Add model 2023-11-08-bert_finetuned_ner_nourhanabosaeed_en

* Add model 2023-11-08-bert_finetuned_ner_abkbvknv_en

* Add model 2023-11-08-bert_ner_3_en

* Add model 2023-11-08-bert_finetuned_ner_xupengzeng_en

* Add model 2023-11-08-bert_finetuned_bpmn_jtlicardo_en

* Add model 2023-11-08-bert_bulgarian_ner_bg

* Add model 2023-11-08-bert_cased_keyword_discriminator_en

* Add model 2023-11-08-bert_finetuned_ner_accelerate_schubertcarvalho_en

* Add model 2023-11-08-bert_finetuned_ner_test1_en

* Add model 2023-11-08-ner_dependency_dutch_official_11_en

* Add model 2023-11-08-bert_dbmdz_3760_split_by_sentence_en

* Add model 2023-11-08-bert_finetuned_ner_johnyyhk_en

* Add model 2023-11-08-bert_finetuned_ner_phamvanlinh143_en

* Add model 2023-11-08-bert_finetuned_ner_gabrielzang_en

* Add model 2023-11-08-bert_base_vietnamese_ud_goeswith_vi

* Add model 2023-11-08-bert_finetuned_ner_augment_5_en

* Add model 2023-11-08-scientific_paper_bert_fine_tuned_new_en

* Add model 2023-11-08-idrisi_lmr_ar_random_typebased_en

* Add model 2023-11-08-bert_finetuned_ner_jake777_en

* Add model 2023-11-08-phibert_finetuned_ner_nepal_bhasa_1_en

* Add model 2023-11-08-bert_finetuned_ner_miguelangelocwb_en

* Add model 2023-11-08-bert_finetuned_ner_carmeco_en

* Add model 2023-11-08-bert_finetuned_ner_ocm_en

* Add model 2023-11-08-bert_finetuned_ner_adeep028_en

* Add model 2023-11-08-bert_finetuned_ner_jperezv_en

* Add model 2023-11-08-bert_finetuned_ner_azuresonance_en

* Add model 2023-11-08-turkish_ner_model_en

* Add model 2023-11-08-bert_tiny_finetuned_finer_longer_en

* Add model 2023-11-08-bert_finetuned_ner_cleandata_en

* Add model 2023-11-08-scibert_finetuned_ner_siddharthtumre_en

* Add model 2023-11-08-bert_finetuned_ner_trainerapi_en

* Add model 2023-11-08-bert_base_multilingual_cased_finetuned_conll03_dutch_xx

* Add model 2023-11-08-bert_finetuned_ner_yuto01_en

* Add model 2023-11-09-bert_finetuned_ner_viktordo_en

* Add model 2023-11-09-marathi_ner_iob_mr

* Add model 2023-11-09-primary_outcome_extraction_en

* Add model 2023-11-09-english_bertsemtagger_gold_en

* Add model 2023-11-09-bert_finetuned_ner_atajti_en

* Add model 2023-11-09-rubert_tiny2_srl_en

* Add model 2023-11-09-bert_finetuned_ner_lyk0013_en

* Add model 2023-11-09-bert_finetuned_ner_alokps_en

* Add model 2023-11-09-jobbert_skill_en

* Add model 2023-11-09-bert_finetuned_ner_sdinger_en

* Add model 2023-11-09-bert_finetuned_ner_fengi_en

* Add model 2023-11-09-cause_effect_detection_persian_en

* Add model 2023-11-09-bert_base_chinese_wikiann_chinese_ner_nepal_bhasa_en

* Add model 2023-11-09-bert_base_cased_conll2003_samoan_all_ner_en

* Add model 2023-11-09-bert_finetuned_ner_alphasaber_en

* Add model 2023-11-09-bert_base_dutch_cased_finetuned_ner_en

* Add model 2023-11-09-software_benchmark_bio_en

* Add model 2023-11-09-hebert_medical_ner_non_pii_en

* Add model 2023-11-09-bert_finetuned_ner_thientran_en

* Add model 2023-11-09-bert_finetuned_ner_fatmazahraz_en

* Add model 2023-11-09-bert_base_uncased_finetuned_recruitment_exp_en

* Add model 2023-11-09-ner_conditional_dutch_official_11_en

* Add model 2023-11-09-bert_cased_ner_fcit499_en

* Add model 2023-11-09-bert_finetuned_ner_petros89_en

* Add model 2023-11-09-entity_extraction_en

* Add model 2023-11-09-bert_finetuned_ner_bpatwa_shi_en

* Add model 2023-11-09-bert_finetuned_ner_bbbbearczx_en

* Add model 2023-11-09-bert_finetuned_ner_v2_vbhasin_en

* Add model 2023-11-09-bert_finetuned_ner_chonlam_en

* Add model 2023-11-09-bert_finetuned_ner_the_bee_en

* Add model 2023-11-09-novels_ner_model_pl

* Add model 2023-11-09-bert_finetuned_ner_daethyra_en

* Add model 2023-11-09-bert_base_spanish_wwm_cased_finetuned_sayula_popoluca_en

* Add model 2023-11-09-bert_finetuned_ner_jfarmerphd_en

* Add model 2023-11-09-burmese_xlm_roberta_large_finetuned_conlljob01_en

* Add model 2023-11-09-indobert_model_ner_en

* Add model 2023-11-09-bert_finetuned_ner_manoharahuggingface_en

* Add model 2023-11-09-scibert_allen_case_v3_en

* Add model 2023-11-09-bert_finetuned_ner_carlomax_en

* Add model 2023-11-09-nominal_groups_recognition_medical_disease_beto_cmm_competencia2_beto_prescripciones_medicas_es

* Add model 2023-11-09-beto_sentiment_analysis_finetuned_ner_en

* Add model 2023-11-09-bert_finetuned_ner_jimbung_en

* Add model 2023-11-09-lewit_informal_tagger_en

* Add model 2023-11-09-bert_base_uncased_finetuned_math_punctuation_ignore_word_parts_en

* Add model 2023-11-09-bert_finetuned_ner_cindymc_en

* Add model 2023-11-09-finetuned_cgp_added_birth_date__female_weight_1_5__test_rundi_false__p_dataset_100_en

* Add model 2023-11-09-bert_finetuned_ner_alvin0220_en

* Add model 2023-11-09-nyt_ingredient_tagger_paraphrase_minilm_l3_v2_en

* Add model 2023-11-09-berttest2_classtest_en

* Add model 2023-11-09-bert_finetuned_ner_mholi_en

* Add model 2023-11-09-downstream_german_bert_en

* Add model 2023-11-09-fin3_en

* Add model 2023-11-09-assignment2_attempt12_en

* Add model 2023-11-09-bert_base_cased_conll2003_samoan_first_ner_en

* Add model 2023-11-09-ner_natfike_en

* Add model 2023-11-09-bert_finetuned_ner_boaii_en

* Add model 2023-11-09-ckiplab_bert_chinese_david_ner_en

* Add model 2023-11-09-bert_finetuned_ner_aimarsg_en

* Add model 2023-11-09-bert_finetuned_ner_cptbaas_en

* Add model 2023-11-09-ner_bert_base_multilingual_uncased_xx

* Add model 2023-11-09-bert_base_cased_ner_trained_on_synthea_en

* Add model 2023-11-09-chinese_macbert_base_finetuned_ner_en

* Add model 2023-11-09-bert_base_cased_finetuned_ner_guitap_en

* Add model 2023-11-09-bert_finetuned_ner_abhishekverma_en

* Add model 2023-11-09-bert_base_portuguese_cased_finetuned_ner_en

* Add model 2023-11-09-gene_finetuned_en

* Add model 2023-11-09-medicare_ner_en

* Add model 2023-11-09-bert_finetuned_ner_shamweel_en

* Add model 2023-11-09-bert_finetuned_ner_krolis_en

* Add model 2023-11-09-n2c2_container_bert_10ep_en

* Add model 2023-11-09-bert_finetuned_ner_ish97_en

* Add model 2023-11-09-bert_finetuned_ner_hatman_en

* Add model 2023-11-09-bert_finetuned_requirements_rodp_en

* Add model 2023-11-09-bert_base_german_cased_noisy_pretrain_fine_tuned_v2_en

* Add model 2023-11-09-bertimbau_base_lener_breton_finetuned_lener_breton_pt

* Add model 2023-11-09-bert_finetuned_ner_amartyobanerjee_en

* Add model 2023-11-09-biobert_finetuned_ner_conll2003_en

* Add model 2023-11-09-bert_base_uncased_finetuned_material_synthesis_en

* Add model 2023-11-09-vietnamese_feedback_model_1_1_0_en

* Add model 2023-11-09-ote_domianadaption_absa_marbert2_hard_run1_en

* Add model 2023-11-09-article_50v0_ner_model_3epochs_en

* Add model 2023-11-09-bert_finetuned_ner_steven_qi_zhao_en

* Add model 2023-11-09-bert_finetuned_ner_yixi_en

* Add model 2023-11-09-german_bert_finetuned_ner_en

* Add model 2023-11-09-burmese_ner_model1_2_split_by_sentence_en

* Add model 2023-11-09-test_nerv2_en

* Add model 2023-11-09-porttagger_oilgas_base_en

* Add model 2023-11-09-me_lid_bert_mr

* Add model 2023-11-09-german_medbert_birads_ner100_de

---------

Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com>
  • Loading branch information
jsl-models and ahmedlone127 authored Nov 10, 2023
1 parent ab94420 commit ca7234a
Show file tree
Hide file tree
Showing 220 changed files with 20,460 additions and 0 deletions.
93 changes: 93 additions & 0 deletions docs/_posts/ahmedlone127/2023-11-08-aldi_token_di_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
---
layout: model
title: English aldi_token_di BertForTokenClassification from AMR-KELEG
author: John Snow Labs
name: aldi_token_di
date: 2023-11-08
tags: [bert, en, open_source, token_classification, onnx]
task: Named Entity Recognition
language: en
edition: Spark NLP 5.2.0
spark_version: 3.0
supported: true
engine: onnx
annotator: BertForTokenClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`aldi_token_di` is a English model originally trained by AMR-KELEG.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/aldi_token_di_en_5.2.0_3.0_1699435695095.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/aldi_token_di_en_5.2.0_3.0_1699435695095.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python


documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")


tokenClassifier = BertForTokenClassification.pretrained("aldi_token_di","en") \
.setInputCols(["documents","token"]) \
.setOutputCol("ner")

pipeline = Pipeline().setStages([documentAssembler, tokenClassifier])

pipelineModel = pipeline.fit(data)

pipelineDF = pipelineModel.transform(data)

```
```scala


val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("embeddings")

val tokenClassifier = BertForTokenClassification
.pretrained("aldi_token_di", "en")
.setInputCols(Array("documents","token"))
.setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenClassifier))

val pipelineModel = pipeline.fit(data)

val pipelineDF = pipelineModel.transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|aldi_token_di|
|Compatibility:|Spark NLP 5.2.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[ner]|
|Language:|en|
|Size:|608.7 MB|

## References

https://huggingface.co/AMR-KELEG/ALDi-Token-DI
93 changes: 93 additions & 0 deletions docs/_posts/ahmedlone127/2023-11-08-arabert_finetuned_caner_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
---
layout: model
title: English arabert_finetuned_caner BertForTokenClassification from Montazer
author: John Snow Labs
name: arabert_finetuned_caner
date: 2023-11-08
tags: [bert, en, open_source, token_classification, onnx]
task: Named Entity Recognition
language: en
edition: Spark NLP 5.2.0
spark_version: 3.0
supported: true
engine: onnx
annotator: BertForTokenClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`arabert_finetuned_caner` is a English model originally trained by Montazer.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/arabert_finetuned_caner_en_5.2.0_3.0_1699464760507.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/arabert_finetuned_caner_en_5.2.0_3.0_1699464760507.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python


documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")


tokenClassifier = BertForTokenClassification.pretrained("arabert_finetuned_caner","en") \
.setInputCols(["documents","token"]) \
.setOutputCol("ner")

pipeline = Pipeline().setStages([documentAssembler, tokenClassifier])

pipelineModel = pipeline.fit(data)

pipelineDF = pipelineModel.transform(data)

```
```scala


val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("embeddings")

val tokenClassifier = BertForTokenClassification
.pretrained("arabert_finetuned_caner", "en")
.setInputCols(Array("documents","token"))
.setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenClassifier))

val pipelineModel = pipeline.fit(data)

val pipelineDF = pipelineModel.transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|arabert_finetuned_caner|
|Compatibility:|Spark NLP 5.2.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[ner]|
|Language:|en|
|Size:|505.2 MB|

## References

https://huggingface.co/Montazer/arabert-finetuned-caner
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
---
layout: model
title: English archeological_ner_english BertForTokenClassification from nicolauduran45
author: John Snow Labs
name: archeological_ner_english
date: 2023-11-08
tags: [bert, en, open_source, token_classification, onnx]
task: Named Entity Recognition
language: en
edition: Spark NLP 5.2.0
spark_version: 3.0
supported: true
engine: onnx
annotator: BertForTokenClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`archeological_ner_english` is a English model originally trained by nicolauduran45.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/archeological_ner_english_en_5.2.0_3.0_1699444479821.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/archeological_ner_english_en_5.2.0_3.0_1699444479821.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python


documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")


tokenClassifier = BertForTokenClassification.pretrained("archeological_ner_english","en") \
.setInputCols(["documents","token"]) \
.setOutputCol("ner")

pipeline = Pipeline().setStages([documentAssembler, tokenClassifier])

pipelineModel = pipeline.fit(data)

pipelineDF = pipelineModel.transform(data)

```
```scala


val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("embeddings")

val tokenClassifier = BertForTokenClassification
.pretrained("archeological_ner_english", "en")
.setInputCols(Array("documents","token"))
.setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenClassifier))

val pipelineModel = pipeline.fit(data)

val pipelineDF = pipelineModel.transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|archeological_ner_english|
|Compatibility:|Spark NLP 5.2.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[ner]|
|Language:|en|
|Size:|407.2 MB|

## References

https://huggingface.co/nicolauduran45/archeological_ner_en
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
---
layout: model
title: English autotrain_ner_8_86129142996 BertForTokenClassification from smirki
author: John Snow Labs
name: autotrain_ner_8_86129142996
date: 2023-11-08
tags: [bert, en, open_source, token_classification, onnx]
task: Named Entity Recognition
language: en
edition: Spark NLP 5.2.0
spark_version: 3.0
supported: true
engine: onnx
annotator: BertForTokenClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`autotrain_ner_8_86129142996` is a English model originally trained by smirki.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/autotrain_ner_8_86129142996_en_5.2.0_3.0_1699448171608.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/autotrain_ner_8_86129142996_en_5.2.0_3.0_1699448171608.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python


documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")


tokenClassifier = BertForTokenClassification.pretrained("autotrain_ner_8_86129142996","en") \
.setInputCols(["documents","token"]) \
.setOutputCol("ner")

pipeline = Pipeline().setStages([documentAssembler, tokenClassifier])

pipelineModel = pipeline.fit(data)

pipelineDF = pipelineModel.transform(data)

```
```scala


val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("embeddings")

val tokenClassifier = BertForTokenClassification
.pretrained("autotrain_ner_8_86129142996", "en")
.setInputCols(Array("documents","token"))
.setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenClassifier))

val pipelineModel = pipeline.fit(data)

val pipelineDF = pipelineModel.transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|autotrain_ner_8_86129142996|
|Compatibility:|Spark NLP 5.2.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[ner]|
|Language:|en|
|Size:|407.2 MB|

## References

https://huggingface.co/smirki/autotrain-ner-8-86129142996
Loading

0 comments on commit ca7234a

Please sign in to comment.