Skip to content

Commit

Permalink
2023-10-24-bert_cn_finetuning_18811449050_en (#14039)
Browse files Browse the repository at this point in the history
* Add model 2023-10-25-fbert_aiclass_en

* Add model 2023-10-25-bert_ft_qqp_1_jeevesh8_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_71_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_56_en

* Add model 2023-10-25-bert_ft_qqp_2_jeevesh8_en

* Add model 2023-10-25-xlm_bert_go_emotions_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_52_en

* Add model 2023-10-25-bert_ft_qqp_3_jeevesh8_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_3_en

* Add model 2023-10-25-cq_bert_model_repo_en

* Add model 2023-10-25-bert_fine_trained_w_imdb_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_77_en

* Add model 2023-10-25-bert_base_arabertv2_finetuned_emotion_3_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_48_en

* Add model 2023-10-25-dkbert_hatespeech_detection_da

* Add model 2023-10-25-bert_classifier_reddit_tc_en

* Add model 2023-10-25-prot_bert_finetuned_localization_hazel0707_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_59_en

* Add model 2023-10-25-bert_classifier_bert_base_uncased_hatexplain_rationale_two_en

* Add model 2023-10-25-bert_regression_dynamic_tokenlimit_v1_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_66_en

* Add model 2023-10-25-bert_multilingual_go_emtions_xx

* Add model 2023-10-25-bert_ft_qqp_5_jeevesh8_en

* Add model 2023-10-25-sikubert_finetuned_poetry_en

* Add model 2023-10-25-bert_ft_qqp_7_jeevesh8_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_38_en

* Add model 2023-10-25-fbert_ai_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_67_en

* Add model 2023-10-25-bert_base_uncased_mnli_pietrolesci_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_64_en

* Add model 2023-10-25-hatebert_ishate_29k_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_78_en

* Add model 2023-10-25-bert_ft_qqp_11_jeevesh8_en

* Add model 2023-10-25-bert_ft_qqp_0_jeevesh8_en

* Add model 2023-10-25-bert_ft_qqp_4_jeevesh8_en

* Add model 2023-10-25-bert_sequence_classifier_dehate_mono_english_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_21_en

* Add model 2023-10-25-rubert_tweetsentiment_en

* Add model 2023-10-25-bert_ft_qqp_13_jeevesh8_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_41_en

* Add model 2023-10-25-indobertnews_en

* Add model 2023-10-25-bert_ft_qqp_14_jeevesh8_en

* Add model 2023-10-25-bert_sequence_classifier_dehate_mono_french_fr

* Add model 2023-10-25-kobert_senti_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_14_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_1_en

* Add model 2023-10-25-bert_asian_hate_tweets_self_unclean_en

* Add model 2023-10-25-bert_ft_qqp_9_jeevesh8_en

* Add model 2023-10-25-bert_classifier_biobert_v1.1_pub_section_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_23_en

* Add model 2023-10-25-bert_ft_qqp_16_jeevesh8_en

* Add model 2023-10-25-bert_ft_qqp_17_jeevesh8_en

* Add model 2023-10-25-bert_base_banking77_pt2_laurie_en

* Add model 2023-10-25-bert_for_pac_nl

* Add model 2023-10-25-bert_sequence_classifier_dehate_mono_arabic_ar

* Add model 2023-10-25-bert_ft_qqp_10_jeevesh8_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_79_en

* Add model 2023-10-25-bert_ft_qqp_18_jeevesh8_en

* Add model 2023-10-25-rubert_tiny_emotion_russian_cedr_m7_en

* Add model 2023-10-25-autotrain_bert_nlp_3450894022_en

* Add model 2023-10-25-bert_ft_qqp_19_jeevesh8_en

* Add model 2023-10-25-bert_ft_qqp_12_jeevesh8_en

* Add model 2023-10-25-bert_sequence_classifier_dehate_mono_italian_it

* Add model 2023-10-25-bert_base_uncased_finetuned_glue_mrpc_en

* Add model 2023-10-25-bert_ft_cola_1_en

* Add model 2023-10-25-rubert_base_emotion_russian_cedr_m7_en

* Add model 2023-10-25-bert_ft_qqp_21_jeevesh8_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_53_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_76_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_31_en

* Add model 2023-10-25-bert_sequence_classifier_dehate_mono_polish_pl

* Add model 2023-10-25-bert_base_cased_manifesto_2018_en

* Add model 2023-10-25-bert_ft_qqp_23_jeevesh8_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_74_en

* Add model 2023-10-25-bert_base_uncased_with_mrpc_trained_en

* Add model 2023-10-25-tiny_bert_mnli_distilled_en

* Add model 2023-10-25-bert_base_finetuned_emotion_en

* Add model 2023-10-25-bert_italian_xxl_cased_itacola_en

* Add model 2023-10-25-bert_ft_qqp_25_jeevesh8_en

* Add model 2023-10-25-macedonian_bert_sentiment_classification_4labels_en

* Add model 2023-10-25-bert_base_indonesian_522m_finetuned_sentiment_en

* Add model 2023-10-25-bert_ft_qqp_26_jeevesh8_en

* Add model 2023-10-25-bert_sequence_classifier_dehate_mono_spanish_es

* Add model 2023-10-25-bert_base_uncased_stsb_jeremiahz_en

* Add model 2023-10-25-bert_finetuned_banking77test_en

* Add model 2023-10-25-bert_ft_qqp_27_jeevesh8_en

* Add model 2023-10-25-bert_base_uncased_qnli_jeremiahz_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_73_en

* Add model 2023-10-25-incivility_v1_final_tulio_chilean_spanish_bert_en

* Add model 2023-10-25-bert_sequence_classifier_persian_farsi_base_uncased_clf_digimag_fa

* Add model 2023-10-25-hate_v2_final_tulio_chilean_spanish_bert_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_25_en

* Add model 2023-10-25-bert_base_uncased_mnli_jeremiahz_en

* Add model 2023-10-25-bert_ft_qqp_29_jeevesh8_en

* Add model 2023-10-25-bert_sequence_classifier_persian_farsi_base_uncased_sentiment_deepsentipers_binary_fa

* Add model 2023-10-25-bert_ft_qqp_20_jeevesh8_en

* Add model 2023-10-25-bert_base_uncased_qqp_jeremiahz_en

* Add model 2023-10-25-tiny_bert_rte_distilled_en

* Add model 2023-10-25-test_bert_training_en

* Add model 2023-10-25-bert_base_uncased_wnli_jeremiahz_en

* Add model 2023-10-25-bert_ft_qqp_15_jeevesh8_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_15_en

* Add model 2023-10-25-deprem_bert_128k_v13_beta_tr

* Add model 2023-10-25-bert_sequence_classifier_persian_farsi_base_uncased_clf_persiannews_fa

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_54_en

* Add model 2023-10-25-bert_ft_qqp_30_jeevesh8_en

* Add model 2023-10-25-subsimulator_bert_en

* Add model 2023-10-25-tiny_bert_sst2_distilled_smith123_en

* Add model 2023-10-25-bert_fine_tuned_cola_sanjay1234_en

* Add model 2023-10-25-bert_classifier_bert_base_uncased_hatexplain_en

* Add model 2023-10-25-indoberttypenews_en

* Add model 2023-10-25-bert_classifier_rubertconv_toxic_clf_ru

* Add model 2023-10-25-bert_base_uncased_sst_2_16_42_en

* Add model 2023-10-25-bert_classifier_base_for_multilabel_sentence_classification_en

* Add model 2023-10-25-finetune_bert_base_cased_en

* Add model 2023-10-25-bert_ft_qqp_8_jeevesh8_en

* Add model 2023-10-25-indobertnewstest_dimassamid_en

* Add model 2023-10-25-bert_cn_finetuning_itcastai_en

* Add model 2023-10-25-bert_base_finetuned_ynat_yooonsangbeom_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_10_en

* Add model 2023-10-25-bert_cn_finetunning_itcastai_en

* Add model 2023-10-25-scibert_finetuned_dagpap22_en

* Add model 2023-10-25-bert_sequence_classifier_dehate_mono_german_de

* Add model 2023-10-25-tiny_bert_wnli_distilled_en

* Add model 2023-10-25-bert_ft_qqp_40_jeevesh8_en

* Add model 2023-10-25-bert_asian_hate_tweets_self_unlean_with_clean_valid_en

* Add model 2023-10-25-tiny_bert_qnli_distilled_en

* Add model 2023-10-25-bert_ft_qqp_28_jeevesh8_en

* Add model 2023-10-25-bert_base_uncased_sst_2_16_87_en

* Add model 2023-10-25-bert_base_uncased_sst_2_32_42_en

* Add model 2023-10-25-bert_base_uncased_sst_2_32_87_en

* Add model 2023-10-25-bert_lf_en

* Add model 2023-10-25-bert_base_finetuned_nli_jiwon_en

* Add model 2023-10-25-bert_base_uncased_sst_2_32_100_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_61_en

* Add model 2023-10-25-bert_ft_qqp_43_jeevesh8_en

* Add model 2023-10-25-bert_base_uncased_sst_2_64_13_en

* Add model 2023-10-25-bert_base_uncased_finetuned_claqua_cqi_en

* Add model 2023-10-25-bert_ft_qqp_44_jeevesh8_en

* Add model 2023-10-25-bert_base_uncased_finetuned_sufficiency_dagstuhl_otherseeds_en

* Add model 2023-10-25-bert_base_uncased_finetuned_sufficiency_dagstuhl_seed_9_en

* Add model 2023-10-25-tiny_bert_sst2_distilled_youssef320_en

* Add model 2023-10-25-bert_base_uncased_finetuned_claqua_cqa_predicate_en

* Add model 2023-10-25-bert_ft_qqp_46_jeevesh8_en

* Add model 2023-10-25-hate_v1_final_bert_base_spanish_wwm_cased_en

* Add model 2023-10-25-bert_base_uncased_finetuned1_claqua_cqa_entity_en

* Add model 2023-10-25-bert_lf_bond_en

* Add model 2023-10-25-bert_ft_qqp_47_jeevesh8_en

* Add model 2023-10-25-bert_large_uncased_sst_2_16_13_en

* Add model 2023-10-25-bert_ft_qqp_48_jeevesh8_en

* Add model 2023-10-25-bert_classifier_tiny_sst2_distilled_l4_h_512_en

* Add model 2023-10-25-bert_base_uncased_finetuned_iemocap_en

* Add model 2023-10-25-bert_ft_qqp_49_jeevesh8_en

* Add model 2023-10-25-kobert_esg_en

* Add model 2023-10-25-bert_base_uncased_stereoset_classifieronly_en

* Add model 2023-10-25-bert_ft_qqp_50_jeevesh8_en

* Add model 2023-10-25-bert_base_uncased_finetuned_iemocap_uptuna_en

* Add model 2023-10-25-bert_ft_qqp_39_jeevesh8_en

* Add model 2023-10-25-bert_ft_qqp_51_jeevesh8_en

* Add model 2023-10-25-bioclinical_bert_ft_m3_lc_en

* Add model 2023-10-25-burmese_bert_imdb_en

* Add model 2023-10-25-mengzi_bert_base_fin_finetuning_wallstreetcn_morning_news_market_overview_open_000001sh_v1_zh

* Add model 2023-10-25-goog_bert_ft_cola_4_en

* Add model 2023-10-25-bert_classifier_german_sentiment_twitter_de

* Add model 2023-10-25-bert_base_chinese_finetuning_wallstreetcn_morning_news_market_overview_open_000001sh_v1_zh

* Add model 2023-10-25-bert_ft_qqp_53_jeevesh8_en

* Add model 2023-10-25-goog_bert_ft_cola_2_en

* Add model 2023-10-25-bert_fine_tuned_english_news_3_lbl_en

* Add model 2023-10-25-deprem_bert_128k_tr

* Add model 2023-10-25-bert_ft_qqp_54_jeevesh8_en

* Add model 2023-10-25-bert_fine_tuned_english_news_2_lbl_en

* Add model 2023-10-25-bert_large_uncased_sst_2_64_13_en

* Add model 2023-10-25-bert_classifier_tiny_sst2_distilled_l6_h128_en

* Add model 2023-10-25-goog_bert_ft_cola_5_en

* Add model 2023-10-25-bert_base_uncased_finetuned_iemocap_uptuna3_en

* Add model 2023-10-25-goog_bert_ft_cola_1_en

* Add model 2023-10-25-bert_multilingual_sentiment_xx

* Add model 2023-10-25-sqlclassification_normal_bert_model_en

* Add model 2023-10-25-goog_bert_ft_cola_0_en

* Add model 2023-10-25-bert_ft_qqp_58_jeevesh8_en

* Add model 2023-10-25-codenlbert_tiny_en

* Add model 2023-10-25-goog_bert_ft_cola_7_en

* Add model 2023-10-25-bert_ft_qqp_34_jeevesh8_en

* Add model 2023-10-25-goog_bert_ft_cola_6_en

* Add model 2023-10-25-bert_ft_qqp_59_jeevesh8_en

* Add model 2023-10-25-finetunedfinbert_model_en

* Add model 2023-10-25-bert_ft_qqp_60_jeevesh8_en

* Add model 2023-10-25-goog_bert_ft_cola_10_en

* Add model 2023-10-25-bert_base_uncased_finetuned_iemocap5_en

* Add model 2023-10-25-bert_ft_qqp_32_jeevesh8_en

* Add model 2023-10-25-bert_ft_qqp_61_jeevesh8_en

* Add model 2023-10-25-bert_ft_qqp_41_jeevesh8_en

* Add model 2023-10-25-bert_ft_qqp_22_jeevesh8_en

* Add model 2023-10-25-bert_base_uncased_finetuned_kaggle_predicting_effective_arguments_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_75_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_45_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_2_en

* Add model 2023-10-25-codenlbert_samoan_en

* Add model 2023-10-25-bert_fine_tuned_cola_huong_en

* Add model 2023-10-25-bert_finetuned_imdb_wakaka_en

* Add model 2023-10-25-knots_protbertbfd_alphafold_roa7n_en

* Add model 2023-10-25-bert_large_uncased_sst_2_64_13_smoothed_en

* Add model 2023-10-25-finetuned_sc_indobert_on_indonli_basic_train_en

* Add model 2023-10-25-bert_ft_qqp_65_jeevesh8_en

* Add model 2023-10-25-std_0pnt2_bert_ft_cola_43_en

* Add model 2023-10-25-bert_base_uncased_finetuned_iemocap_uptuna5_en

* Add model 2023-10-25-bert_ft_qqp_66_jeevesh8_en

* Add model 2023-10-25-bert_base_uncased_sst_2_32_13_smoothed_en

* Add model 2023-10-25-bert_base_uncased_finetuned_iemocap_uptuna6_en

* Add model 2023-10-25-bert_ft_qqp_67_jeevesh8_en

* Add model 2023-10-25-bert_base_uncased_sst_2_64_13_smoothed_en

* Add model 2023-10-25-bert_base_uncased_finetuned_iemocap7_en

* Add model 2023-10-25-goog_bert_ft_cola_17_en

* Add model 2023-10-25-binary_fully_trained_bert_en

* Add model 2023-10-25-bert_ft_qqp_57_jeevesh8_en

* Add model 2023-10-25-bert_base_uncased_sst_2_16_13_smoothed_en

* Add model 2023-10-25-bert_ft_qqp_69_jeevesh8_en

* Add model 2023-10-25-goog_bert_ft_cola_16_en

* Add model 2023-10-25-goog_bert_ft_cola_20_en

* Add model 2023-10-25-bert_ft_qqp_70_jeevesh8_en

* Add model 2023-10-25-bert_base_multilingual_cased_finetuned_review_xx

* Add model 2023-10-25-bert_fine_tuned_cola_tamiti1610001_en

* Add model 2023-10-25-bert_ft_qqp_71_jeevesh8_en

* Add model 2023-10-25-goog_bert_ft_cola_13_en

* Add model 2023-10-25-goog_bert_ft_cola_11_en

* Add model 2023-10-25-deprem_bert_128k_v2_tr

* Add model 2023-10-25-bert_base_uncased_finetuned_swift_v_shakes_en

* Add model 2023-10-25-bert_large_uncased_sst_2_32_13_en

* Add model 2023-10-25-goog_bert_ft_cola_8_en

* Add model 2023-10-25-goog_bert_ft_cola_15_en

* Add model 2023-10-25-bert_large_uncased_sst_2_32_13_smoothed_en

* Add model 2023-10-25-covid_twitter_bert_v2_3_4_2e_05_0_01_en

* Add model 2023-10-25-finbert_tsla_en

* Add model 2023-10-25-backdoored_bert_finetuned_sst2_en

* Add model 2023-10-25-bert_fine_tuned_cola_kaori1707_en

* Add model 2023-10-25-bert_ft_qqp_74_jeevesh8_en

* Add model 2023-10-25-esgbert_en

* Add model 2023-10-25-bert_ft_qqp_63_jeevesh8_en

* Add model 2023-10-25-bert_base_uncased_finetuned_iemocap8_en

* Add model 2023-10-25-bert_base_uncased_sst_2_32_21_en

* Add model 2023-10-25-bert_ft_qqp_76_jeevesh8_en

* Add model 2023-10-25-goog_bert_ft_cola_27_en

* Add model 2023-10-25-bert_base_uncased_finetuned_sufficiency_dagstuhl_seed_14_en

* Add model 2023-10-25-goog_bert_ft_cola_28_en

* Add model 2023-10-25-bert_base_uncased_ituthesis2022mlvinikw_en

* Add model 2023-10-25-bert_classifier_tiny_qqp_distilled_en

* Add model 2023-10-25-bert_ft_qqp_37_jeevesh8_en

* Add model 2023-10-25-goog_bert_ft_cola_25_en

* Add model 2023-10-25-bert_ft_qqp_78_jeevesh8_en

* Add model 2023-10-25-bert_base_finetuned_nli_jihyun22_en

---------

Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com>
  • Loading branch information
jsl-models and ahmedlone127 authored Oct 25, 2023
1 parent a6cb9d4 commit b505d77
Show file tree
Hide file tree
Showing 542 changed files with 52,894 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English bert_base_arabertv2_finetuned_emotion_aetd2 BertForSequenceClassification from MahaJar
author: John Snow Labs
name: bert_base_arabertv2_finetuned_emotion_aetd2
date: 2023-10-24
tags: [bert, en, open_source, sequence_classification, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.1.4
spark_version: 3.4
supported: true
engine: onnx
annotator: BertForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bert_base_arabertv2_finetuned_emotion_aetd2` is a English model originally trained by MahaJar.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_base_arabertv2_finetuned_emotion_aetd2_en_5.1.4_3.4_1698189731931.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_base_arabertv2_finetuned_emotion_aetd2_en_5.1.4_3.4_1698189731931.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_arabertv2_finetuned_emotion_aetd2","en")\
.setInputCols(["document","token"])\
.setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)

```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_arabertv2_finetuned_emotion_aetd2","en")
.setInputCols(Array("document","token"))
.setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_base_arabertv2_finetuned_emotion_aetd2|
|Compatibility:|Spark NLP 5.1.4+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|507.1 MB|

## References

https://huggingface.co/MahaJar/bert-base-arabertv2-finetuned-emotion_AETD2
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English bert_base_arabic_camelbert_msa_sixteenth_xnli_finetuned_vish88 BertForSequenceClassification from vish88
author: John Snow Labs
name: bert_base_arabic_camelbert_msa_sixteenth_xnli_finetuned_vish88
date: 2023-10-24
tags: [bert, en, open_source, sequence_classification, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.1.4
spark_version: 3.4
supported: true
engine: onnx
annotator: BertForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bert_base_arabic_camelbert_msa_sixteenth_xnli_finetuned_vish88` is a English model originally trained by vish88.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_base_arabic_camelbert_msa_sixteenth_xnli_finetuned_vish88_en_5.1.4_3.4_1698189720514.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_base_arabic_camelbert_msa_sixteenth_xnli_finetuned_vish88_en_5.1.4_3.4_1698189720514.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_arabic_camelbert_msa_sixteenth_xnli_finetuned_vish88","en")\
.setInputCols(["document","token"])\
.setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)

```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_arabic_camelbert_msa_sixteenth_xnli_finetuned_vish88","en")
.setInputCols(Array("document","token"))
.setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_base_arabic_camelbert_msa_sixteenth_xnli_finetuned_vish88|
|Compatibility:|Spark NLP 5.1.4+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|408.6 MB|

## References

https://huggingface.co/vish88/bert-base-arabic-camelbert-msa-sixteenth-xnli-finetuned
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English bert_base_arabic_camelbert_msa_xnli_finetuned BertForSequenceClassification from vish88
author: John Snow Labs
name: bert_base_arabic_camelbert_msa_xnli_finetuned
date: 2023-10-24
tags: [bert, en, open_source, sequence_classification, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.1.4
spark_version: 3.4
supported: true
engine: onnx
annotator: BertForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bert_base_arabic_camelbert_msa_xnli_finetuned` is a English model originally trained by vish88.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_base_arabic_camelbert_msa_xnli_finetuned_en_5.1.4_3.4_1698189328456.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_base_arabic_camelbert_msa_xnli_finetuned_en_5.1.4_3.4_1698189328456.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_arabic_camelbert_msa_xnli_finetuned","en")\
.setInputCols(["document","token"])\
.setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)

```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_arabic_camelbert_msa_xnli_finetuned","en")
.setInputCols(Array("document","token"))
.setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_base_arabic_camelbert_msa_xnli_finetuned|
|Compatibility:|Spark NLP 5.1.4+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|408.6 MB|

## References

https://huggingface.co/vish88/bert-base-arabic-camelbert-msa-xnli-finetuned
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English bert_base_cased_finetuned_mnli BertForSequenceClassification from George-Ogden
author: John Snow Labs
name: bert_base_cased_finetuned_mnli
date: 2023-10-24
tags: [bert, en, open_source, sequence_classification, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.1.4
spark_version: 3.4
supported: true
engine: onnx
annotator: BertForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bert_base_cased_finetuned_mnli` is a English model originally trained by George-Ogden.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_base_cased_finetuned_mnli_en_5.1.4_3.4_1698191244740.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_base_cased_finetuned_mnli_en_5.1.4_3.4_1698191244740.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_cased_finetuned_mnli","en")\
.setInputCols(["document","token"])\
.setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)

```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_cased_finetuned_mnli","en")
.setInputCols(Array("document","token"))
.setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_base_cased_finetuned_mnli|
|Compatibility:|Spark NLP 5.1.4+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|405.9 MB|

## References

https://huggingface.co/George-Ogden/bert-base-cased-finetuned-mnli
Loading

0 comments on commit b505d77

Please sign in to comment.