-
Notifications
You must be signed in to change notification settings - Fork 717
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARKNLP-855] Introducing AlbertForZeroShotClassification
- Loading branch information
Showing
8 changed files
with
796 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
211 changes: 211 additions & 0 deletions
211
python/sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,211 @@ | ||
# Copyright 2017-2024 John Snow Labs | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Contains classes for AlbertForZeroShotClassification.""" | ||
|
||
from sparknlp.common import * | ||
|
||
|
||
class AlbertForZeroShotClassification(AnnotatorModel, | ||
HasCaseSensitiveProperties, | ||
HasBatchedAnnotate, | ||
HasClassifierActivationProperties, | ||
HasCandidateLabelsProperties, | ||
HasEngine, | ||
HasMaxSentenceLengthLimit): | ||
"""AlbertForZeroShotClassification using a `ModelForSequenceClassification` trained on NLI (natural language | ||
inference) tasks. Equivalent of `DistilBertForSequenceClassification` models, but these models don't require a hardcoded | ||
number of potential classes, they can be chosen at runtime. It usually means it's slower but it is much more | ||
flexible. | ||
Note that the model will loop through all provided labels. So the more labels you have, the | ||
longer this process will take. | ||
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis | ||
pair and passed to the pretrained model. | ||
Pretrained models can be loaded with :meth:`.pretrained` of the companion | ||
object: | ||
>>> sequenceClassifier = AlbertForZeroShotClassification.pretrained() \\ | ||
... .setInputCols(["token", "document"]) \\ | ||
... .setOutputCol("label") | ||
The default model is ``"albert_base_zero_shot_classifier_onnx"``, if no name is | ||
provided. | ||
For available pretrained models please see the `Models Hub | ||
<https://sparknlp.orgtask=Text+Classification>`__. | ||
To see which models are compatible and how to import them see | ||
`Import Transformers into Spark NLP 🚀 | ||
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_. | ||
====================== ====================== | ||
Input Annotation types Output Annotation type | ||
====================== ====================== | ||
``DOCUMENT, TOKEN`` ``CATEGORY`` | ||
====================== ====================== | ||
Parameters | ||
---------- | ||
batchSize | ||
Batch size. Large values allows faster processing but requires more | ||
memory, by default 8 | ||
caseSensitive | ||
Whether to ignore case in tokens for embeddings matching, by default | ||
True | ||
configProtoBytes | ||
ConfigProto from tensorflow, serialized into byte array. | ||
maxSentenceLength | ||
Max sentence length to process, by default 128 | ||
coalesceSentences | ||
Instead of 1 class per sentence (if inputCols is `sentence`) output 1 | ||
class per document by averaging probabilities in all sentences, by | ||
default False | ||
activation | ||
Whether to calculate logits via Softmax or Sigmoid, by default | ||
`"softmax"`. | ||
Examples | ||
-------- | ||
>>> import sparknlp | ||
>>> from sparknlp.base import * | ||
>>> from sparknlp.annotator import * | ||
>>> from pyspark.ml import Pipeline | ||
>>> documentAssembler = DocumentAssembler() \\ | ||
... .setInputCol("text") \\ | ||
... .setOutputCol("document") | ||
>>> tokenizer = Tokenizer() \\ | ||
... .setInputCols(["document"]) \\ | ||
... .setOutputCol("token") | ||
>>> sequenceClassifier = AlbertForZeroShotClassification.pretrained() \\ | ||
... .setInputCols(["token", "document"]) \\ | ||
... .setOutputCol("label") \\ | ||
... .setCaseSensitive(True) | ||
>>> pipeline = Pipeline().setStages([ | ||
... documentAssembler, | ||
... tokenizer, | ||
... sequenceClassifier | ||
... ]) | ||
>>> data = spark.createDataFrame([["I have a problem with my iphone that needs to be resolved asap!!"]]).toDF("text") | ||
>>> result = pipeline.fit(data).transform(data) | ||
>>> result.select("label.result").show(truncate=False) | ||
+---------+ | ||
|result | | ||
+---------+ | ||
|[urgent] | | ||
+---------+ | ||
""" | ||
name = "AlbertForZeroShotClassification" | ||
|
||
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN] | ||
|
||
outputAnnotatorType = AnnotatorType.CATEGORY | ||
|
||
configProtoBytes = Param(Params._dummy(), | ||
"configProtoBytes", | ||
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", | ||
TypeConverters.toListInt) | ||
|
||
coalesceSentences = Param(Params._dummy(), "coalesceSentences", | ||
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.", | ||
TypeConverters.toBoolean) | ||
|
||
def getClasses(self): | ||
""" | ||
Returns labels used to train this model | ||
""" | ||
return self._call_java("getClasses") | ||
|
||
def setConfigProtoBytes(self, b): | ||
"""Sets configProto from tensorflow, serialized into byte array. | ||
Parameters | ||
---------- | ||
b : List[int] | ||
ConfigProto from tensorflow, serialized into byte array | ||
""" | ||
return self._set(configProtoBytes=b) | ||
|
||
def setCoalesceSentences(self, value): | ||
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging | ||
probabilities in all sentences. Due to max sequence length limit in almost all transformer models such as Bart | ||
(512 tokens), this parameter helps to feed all the sentences into the model and averaging all the probabilities | ||
for the entire document instead of probabilities per sentence. (Default: true) | ||
Parameters | ||
---------- | ||
value : bool | ||
If the output of all sentences will be averaged to one output | ||
""" | ||
return self._set(coalesceSentences=value) | ||
|
||
@keyword_only | ||
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.AlbertForZeroShotClassification", | ||
java_model=None): | ||
super(AlbertForZeroShotClassification, self).__init__( | ||
classname=classname, | ||
java_model=java_model | ||
) | ||
self._setDefault( | ||
batchSize=8, | ||
maxSentenceLength=128, | ||
caseSensitive=True, | ||
coalesceSentences=False, | ||
activation="softmax" | ||
) | ||
|
||
@staticmethod | ||
def loadSavedModel(folder, spark_session): | ||
"""Loads a locally saved model. | ||
Parameters | ||
---------- | ||
folder : str | ||
Folder of the saved model | ||
spark_session : pyspark.sql.SparkSession | ||
The current SparkSession | ||
Returns | ||
------- | ||
AlbertForZeroShotClassification | ||
The restored model | ||
""" | ||
from sparknlp.internal import _AlbertForZeroShotClassificationLoader | ||
jModel = _AlbertForZeroShotClassificationLoader(folder, spark_session._jsparkSession)._java_obj | ||
return AlbertForZeroShotClassification(java_model=jModel) | ||
|
||
@staticmethod | ||
def pretrained(name="albert_zero_shot_classifier_onnx", lang="en", remote_loc=None): | ||
"""Downloads and loads a pretrained model. | ||
Parameters | ||
---------- | ||
name : str, optional | ||
Name of the pretrained model, by default | ||
"albert_zero_shot_classifier_onnx" | ||
lang : str, optional | ||
Language of the pretrained model, by default "en" | ||
remote_loc : str, optional | ||
Optional remote address of the resource, by default None. Will use | ||
Spark NLPs repositories otherwise. | ||
Returns | ||
------- | ||
BartForZeroShotClassification | ||
The restored model | ||
""" | ||
from sparknlp.pretrained import ResourceDownloader | ||
return ResourceDownloader.downloadModel(AlbertForZeroShotClassification, name, lang, remote_loc) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
60 changes: 60 additions & 0 deletions
60
python/test/annotator/classifier_dl/albert_for_zero_shot_classification_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
# Copyright 2017-2024 John Snow Labs | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
|
||
import pytest | ||
|
||
from sparknlp.annotator import * | ||
from sparknlp.base import * | ||
from test.annotator.common.has_max_sentence_length_test import HasMaxSentenceLengthTests | ||
from test.util import SparkContextForTest | ||
|
||
|
||
@pytest.mark.slow | ||
class AlbertForZeroShotClassificationTestSpec(unittest.TestCase, HasMaxSentenceLengthTests): | ||
def setUp(self): | ||
self.text = "I have a problem with my iphone that needs to be resolved asap!!" | ||
self.data = SparkContextForTest.spark \ | ||
.createDataFrame([[self.text]]).toDF("text") | ||
self.candidate_labels = ["urgent", "mobile", "technology"] | ||
|
||
self.tested_annotator = AlbertForZeroShotClassification \ | ||
.pretrained()\ | ||
.setInputCols(["document", "token"]) \ | ||
.setOutputCol("multi_class") \ | ||
.setCandidateLabels(self.candidate_labels) | ||
|
||
def test_run(self): | ||
document_assembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("document") | ||
|
||
tokenizer = Tokenizer().setInputCols("document").setOutputCol("token") | ||
|
||
doc_classifier = self.tested_annotator | ||
|
||
pipeline = Pipeline(stages=[ | ||
document_assembler, | ||
tokenizer, | ||
doc_classifier | ||
]) | ||
|
||
model = pipeline.fit(self.data) | ||
model.transform(self.data).show() | ||
|
||
light_pipeline = LightPipeline(model) | ||
annotations_result = light_pipeline.fullAnnotate(self.text) | ||
multi_class_result = annotations_result[0]["multi_class"][0].result | ||
self.assertIn(multi_class_result, self.candidate_labels) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.