Skip to content

Commit

Permalink
Merge pull request #13848 from JohnSnowLabs/release/444-release-candi…
Browse files Browse the repository at this point in the history
…date

release/444-release-candidate
  • Loading branch information
maziyarpanahi authored Jun 8, 2023
2 parents ddf39b3 + 7ba4cbd commit 93ff36a
Show file tree
Hide file tree
Showing 1,348 changed files with 10,557 additions and 4,435 deletions.
15 changes: 15 additions & 0 deletions CHANGELOG
Original file line number Diff line number Diff line change
@@ -1,3 +1,18 @@
========
4.4.4
========
----------------
New Features & Enhancements
----------------
* Add `Warmup` stage to loading all Transformers for word embeddings: ALBERT, BERT, CamemBERT, DistilBERT, RoBERTa, XLM-RoBERTa, and XLNet. This helps reducing the first inference time and also validate importing external models from HuggingFace https://github.com/JohnSnowLabs/spark-nlp/pull/13851
* Add new notebooks to import ZeroShot Classifiers for Bert, DistilBERT, and RoBERTa fine-tuned based on NLI datasets https://github.com/JohnSnowLabs/spark-nlp/pull/13845

----------------
Bug Fixes
----------------
* Fix not being able to save models from XXXForSequenceClassitication and XXXForZeroShotClassification annotoators https://github.com/JohnSnowLabs/spark-nlp/pull/13842


========
4.4.3
========
Expand Down
88 changes: 44 additions & 44 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -165,7 +165,7 @@ To use Spark NLP you need the following requirements:

**GPU (optional):**

Spark NLP 4.4.3 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support:
Spark NLP 4.4.4 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support:

- NVIDIA® GPU drivers version 450.80.02 or higher
- CUDA® Toolkit 11.2
Expand All @@ -181,7 +181,7 @@ $ java -version
$ conda create -n sparknlp python=3.7 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==4.4.3 pyspark==3.3.1
$ pip install spark-nlp==4.4.4 pyspark==3.3.1
```

In Python console or Jupyter `Python3` kernel:
Expand Down Expand Up @@ -226,7 +226,7 @@ For more examples, you can visit our dedicated [examples](https://github.com/Joh

## Apache Spark Support

Spark NLP *4.4.3* has been built on top of Apache Spark 3.2 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x
Spark NLP *4.4.4* has been built on top of Apache Spark 3.2 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x

| Spark NLP | Apache Spark 2.3.x | Apache Spark 2.4.x | Apache Spark 3.0.x | Apache Spark 3.1.x | Apache Spark 3.2.x | Apache Spark 3.3.x | Apache Spark 3.4.x |
|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
Expand Down Expand Up @@ -265,7 +265,7 @@ Find out more about `Spark NLP` versions from our [release notes](https://github

## Databricks Support

Spark NLP 4.4.3 has been tested and is compatible with the following runtimes:
Spark NLP 4.4.4 has been tested and is compatible with the following runtimes:

**CPU:**

Expand Down Expand Up @@ -322,7 +322,7 @@ runtimes supporting CUDA 11 are 9.x and above as listed under GPU.

## EMR Support

Spark NLP 4.4.3 has been tested and is compatible with the following EMR releases:
Spark NLP 4.4.4 has been tested and is compatible with the following EMR releases:

- emr-6.2.0
- emr-6.3.0
Expand Down Expand Up @@ -365,11 +365,11 @@ Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x,
```sh
# CPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4
```

The `spark-nlp` has been published to
Expand All @@ -378,11 +378,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.4.3
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.4.4

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.4.3
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.4.4

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.4.3
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.4.4

```

Expand All @@ -392,11 +392,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# AArch64

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.4.3
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.4.4

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.4.3
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.4.4

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.4.3
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.4.4

```

Expand All @@ -406,11 +406,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# M1/M2 (Apple Silicon)

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.4.3
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.4.4

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.4.3
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.4.4

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.4.3
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.4.4

```

Expand All @@ -424,7 +424,7 @@ set in your SparkSession:
spark-shell \
--driver-memory 16g \
--conf spark.kryoserializer.buffer.max=2000M \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4
```

## Scala
Expand All @@ -442,7 +442,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp_2.12</artifactId>
<version>4.4.3</version>
<version>4.4.4</version>
</dependency>
```

Expand All @@ -453,7 +453,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-gpu_2.12</artifactId>
<version>4.4.3</version>
<version>4.4.4</version>
</dependency>
```

Expand All @@ -464,7 +464,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-aarch64_2.12</artifactId>
<version>4.4.3</version>
<version>4.4.4</version>
</dependency>
```

Expand All @@ -475,7 +475,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-silicon_2.12</artifactId>
<version>4.4.3</version>
<version>4.4.4</version>
</dependency>
```

Expand All @@ -485,28 +485,28 @@ coordinates:

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "4.4.3"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "4.4.4"
```

**spark-nlp-gpu:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "4.4.3"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "4.4.4"
```

**spark-nlp-aarch64:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "4.4.3"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "4.4.4"
```

**spark-nlp-silicon:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "4.4.3"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "4.4.4"
```

Maven
Expand All @@ -528,7 +528,7 @@ If you installed pyspark through pip/conda, you can install `spark-nlp` through
Pip:

```bash
pip install spark-nlp==4.4.3
pip install spark-nlp==4.4.4
```

Conda:
Expand Down Expand Up @@ -557,7 +557,7 @@ spark = SparkSession.builder
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4")
.getOrCreate()
```

Expand Down Expand Up @@ -628,7 +628,7 @@ Use either one of the following options
- Add the following Maven Coordinates to the interpreter's library list

```bash
com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4
```

- Add a path to pre-built jar from [here](#compiled-jars) in the interpreter's library list making sure the jar is
Expand All @@ -639,7 +639,7 @@ com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
Apart from the previous step, install the python module through pip

```bash
pip install spark-nlp==4.4.3
pip install spark-nlp==4.4.4
```

Or you can install `spark-nlp` from inside Zeppelin by using Conda:
Expand Down Expand Up @@ -667,7 +667,7 @@ launch the Jupyter from the same Python environment:
$ conda create -n sparknlp python=3.8 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==4.4.3 pyspark==3.3.1 jupyter
$ pip install spark-nlp==4.4.4 pyspark==3.3.1 jupyter
$ jupyter notebook
```

Expand All @@ -684,7 +684,7 @@ export PYSPARK_PYTHON=python3
export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS=notebook

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4
```

Alternatively, you can mix in using `--jars` option for pyspark + `pip install spark-nlp`
Expand All @@ -711,7 +711,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.4.3
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.4.4
```

[Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb)
Expand All @@ -734,7 +734,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.4.3
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.4.4
```

[Spark NLP quick start on Kaggle Kernel](https://www.kaggle.com/mozzie/spark-nlp-named-entity-recognition) is a live
Expand All @@ -753,9 +753,9 @@ demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP

3. In `Libraries` tab inside your cluster you need to follow these steps:

3.1. Install New -> PyPI -> `spark-nlp==4.4.3` -> Install
3.1. Install New -> PyPI -> `spark-nlp==4.4.4` -> Install

3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3` -> Install
3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4` -> Install

4. Now you can attach your notebook to the cluster and use Spark NLP!

Expand Down Expand Up @@ -806,7 +806,7 @@ A sample of your software configuration in JSON on S3 (must be public access):
"spark.kryoserializer.buffer.max": "2000M",
"spark.serializer": "org.apache.spark.serializer.KryoSerializer",
"spark.driver.maxResultSize": "0",
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3"
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4"
}
}]
```
Expand All @@ -815,7 +815,7 @@ A sample of AWS CLI to launch EMR cluster:
```.sh
aws emr create-cluster \
--name "Spark NLP 4.4.3" \
--name "Spark NLP 4.4.4" \
--release-label emr-6.2.0 \
--applications Name=Hadoop Name=Spark Name=Hive \
--instance-type m4.4xlarge \
Expand Down Expand Up @@ -879,7 +879,7 @@ gcloud dataproc clusters create ${CLUSTER_NAME} \
--enable-component-gateway \
--metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \
--initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4
```
2. On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI.
Expand Down Expand Up @@ -918,7 +918,7 @@ spark = SparkSession.builder
.config("spark.kryoserializer.buffer.max", "2000m")
.config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained")
.config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4")
.getOrCreate()
```
Expand All @@ -932,7 +932,7 @@ spark-shell \
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4
```
**pyspark:**
Expand All @@ -945,7 +945,7 @@ pyspark \
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.4
```
**Databricks:**
Expand Down Expand Up @@ -1217,7 +1217,7 @@ spark = SparkSession.builder
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars", "/tmp/spark-nlp-assembly-4.4.3.jar")
.config("spark.jars", "/tmp/spark-nlp-assembly-4.4.4.jar")
.getOrCreate()
```
Expand All @@ -1226,7 +1226,7 @@ spark = SparkSession.builder
version (3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x)
- If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need
to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. (
i.e., `hdfs:///tmp/spark-nlp-assembly-4.4.3.jar`)
i.e., `hdfs:///tmp/spark-nlp-assembly-4.4.4.jar`)
Example of using pretrained Models and Pipelines in offline:
Expand Down
2 changes: 1 addition & 1 deletion build.sbt
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ name := getPackageName(is_silicon, is_gpu, is_aarch64)

organization := "com.johnsnowlabs.nlp"

version := "4.4.3"
version := "4.4.4"

(ThisBuild / scalaVersion) := scalaVer

Expand Down
8 changes: 4 additions & 4 deletions conda/meta.yaml
Original file line number Diff line number Diff line change
@@ -1,15 +1,15 @@
package:
name: "spark-nlp"
version: 4.4.3
version: 4.4.4

app:
entry: spark-nlp
summary: Natural Language Understanding Library for Apache Spark.

source:
fn: spark-nlp-4.4.3.tar.gz
url: https://files.pythonhosted.org/packages/90/e5/607830a58c81f2200f3f40c26043beb208184291325e437c222778e94cce/spark-nlp-4.4.3.tar.gz
sha256: 8eb86079c00d29f659873e26891206a5590036009c67e10192efa7b2eb301fcc
fn: spark-nlp-4.4.4.tar.gz
url: https://files.pythonhosted.org/packages/f9/e4/5eb83ed1c68be9fca636f6c62f9e55da3f2e511818e2a8feb852d6986064/spark-nlp-4.4.4.tar.gz
sha256: d9e2f017ab7cf6e82e775c38862f1a4ee32bbb0af6619e0b9051e6737711b5b6
build:
noarch: generic
number: 0
Expand Down
Loading

0 comments on commit 93ff36a

Please sign in to comment.