-
Notifications
You must be signed in to change notification settings - Fork 717
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add model 2024-07-05-phi2_7b_en * Add model 2024-07-12-bart_large_cnn_en * Add model 2024-07-12-bart_large_cnn_en * Update 2024-07-05-phi2_7b_en.md --------- Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com> Co-authored-by: Maziyar Panahi <maziyar.panahi@iscpif.fr>
- Loading branch information
1 parent
04d9735
commit 8fe1748
Showing
2 changed files
with
151 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
--- | ||
layout: model | ||
title: Phi2 text-to-text model 7b int8 | ||
author: John Snow Labs | ||
name: phi2 | ||
date: 2024-07-05 | ||
tags: [phi2, en, llm, open_source, openvino] | ||
task: Text Generation | ||
language: en | ||
edition: Spark NLP 5.4.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: openvino | ||
annotator: Phi2Transformer | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained phi2 model , adapted and imported into Spark NLP. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/phi2_en_5.4.0_3.0_1720187078320.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/phi2_en_5.4.0_3.0_1720187078320.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
documentAssembler = DocumentAssembler() \ | ||
.setInputCol('text') \ | ||
.setOutputCol('document') | ||
|
||
phi2 = Phi2Transformer \ | ||
.pretrained() \ | ||
.setMaxOutputLength(50) \ | ||
.setDoSample(False) \ | ||
.setInputCols(["document"]) \ | ||
.setOutputCol("phi2_generation") | ||
|
||
pipeline = Pipeline().setStages([documentAssembler, phi2]) | ||
data = spark.createDataFrame([["Who is the founder of Spark-NLP?"]]).toDF("text") | ||
pipelineModel = pipeline.fit(data) | ||
pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
```scala | ||
|
||
val documentAssembler = new DocumentAssembler() | ||
.setInputCols("text") | ||
.setOutputCols("document") | ||
|
||
val phi2 = Phi2Transformer .pretrained() .setMaxOutputLength(50) .setDoSample(False) .setInputCols(["document"]) .setOutputCol("phi2_generation") | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, phi2)) | ||
val data = Seq("Who is the founder of Spark-NLP?").toDS.toDF("text") | ||
val pipelineModel = pipeline.fit(data) | ||
val pipelineDF = pipelineModel.transform(data) | ||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|phi2| | ||
|Compatibility:|Spark NLP 5.4.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Language:|en| | ||
|Size:|9.1 GB| |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
--- | ||
layout: model | ||
title: BART (large-sized model), fine-tuned on CNN Daily Mail | ||
author: John Snow Labs | ||
name: bart_large_cnn | ||
date: 2024-07-12 | ||
tags: [bart, bartsummarization, cnn, text_to_text, en, open_source, tensorflow] | ||
task: Summarization | ||
language: en | ||
edition: Spark NLP 5.4.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: BartTransformer | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
BART model pre-trained on English language, and fine-tuned on CNN Daily Mail. It was introduced in the paper BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Lewis et al. and first released in [this repository (https://github.com/pytorch/fairseq/tree/master/examples/bart). | ||
|
||
Disclaimer: The team releasing BART did not write a model card for this model so this model card has been written by the Hugging Face team. | ||
|
||
Model description | ||
BART is a transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. | ||
|
||
BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). This particular checkpoint has been fine-tuned on CNN Daily Mail, a large collection of text-summary pairs | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bart_large_cnn_en_5.4.0_3.0_1720754758442.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bart_large_cnn_en_5.4.0_3.0_1720754758442.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
bart = BartTransformer.pretrained("bart_large_cnn") .setTask("summarize:") .setMaxOutputLength(200) .setInputCols(["documents"]) .setOutputCol("summaries") | ||
|
||
``` | ||
```scala | ||
|
||
val bart = BartTransformer.pretrained("bart_large_cnn") | ||
.setTask("summarize:") | ||
.setMaxOutputLength(200) | ||
.setInputCols("documents") | ||
.setOutputCol("summaries") | ||
|
||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|bart_large_cnn| | ||
|Compatibility:|Spark NLP 5.4.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[documents]| | ||
|Output Labels:|[generation]| | ||
|Language:|en| | ||
|Size:|974.9 MB| |