Skip to content

Commit

Permalink
2023-12-18-sentiment_analysis_distillbert_base_uncased_model_en (#14102)
Browse files Browse the repository at this point in the history
* Add model 2023-12-22-roberta_qa_tinyroberta_6l_768d_en

* Add model 2023-12-22-roberta_base_squad_i8_f32_p95_en

* Add model 2023-12-22-roberta_large_squadv2_aware_ai_en

* Add model 2023-12-22-roberta_qa_testabsa_en

* Add model 2023-12-22-roberta_base_squad_i8_f32_p10_en

* Add model 2023-12-22-roberta_base_squad_i8_f32_p20_en

* Add model 2023-12-22-roberta_base_squad_i8_f32_p55_en

* Add model 2023-12-22-roberta_qa_unqover_base_news_en

* Add model 2023-12-22-bullet_point_en

* Add model 2023-12-22-roberta_base_squad_i8_f32_p80_en

* Add model 2023-12-22-roberta_base_squad_i8_f32_p60_en

* Add model 2023-12-22-roberta_base_on_cuad_en

* Add model 2023-12-22-climatebertqa_en

* Add model 2023-12-22-roberta_base_squad_i8_f16_p35_en

* Add model 2023-12-22-roberta_quangb1910128_en

* Add model 2023-12-22-roberta_base_squad2_nq_bioasq_en

* Add model 2023-12-22-newspaper_qa_en

* Add model 2023-12-22-roberta_base_squad_i8_f32_p40_en

* Add model 2023-12-22-roberta_base_cuad_marshmellow77_en

* Add model 2023-12-22-roberta_base_squad_i8_f32_p15_en

* Add model 2023-12-22-roberta_base_squad_i8_f16_p30_en

* Add model 2023-12-22-ruroberta_sberquad_en

* Add model 2023-12-22-roberta_base_squad_i8_f16_p20_en

* Add model 2023-12-22-roberta_base_finetuned_squad8000_en

* Add model 2023-12-22-finetuned_roberta_squad2_tiny_en

* Add model 2023-12-22-roberta_base_mod_squad_en

* Add model 2023-12-22-roberta_base_squad_i8_f16_p45_en

* Add model 2023-12-22-roberta_base_squad_i8_f32_p30_en

* Add model 2023-12-22-roberta_base_cuad_qa_en

* Add model 2023-12-22-roberta_base_squad_i8_f16_p10_en

* Add model 2023-12-22-roberta_base_squad_i8_f16_p50_en

* Add model 2023-12-22-qa_model_finance_domain_fiqa_v6_en

* Add model 2023-12-22-robbert_v2_dutch_qa_nl

* Add model 2023-12-22-distilroberta_squad2_en

* Add model 2023-12-22-roberta_large_few_shot_k_64_finetuned_squad_seed_4_en

* Add model 2023-12-22-legal_qa_en

* Add model 2023-12-22-roberta_base_squad2_p10_en

* Add model 2023-12-22-roberta_base_squad_i8_f16_p80_en

* Add model 2023-12-22-legal_roberta_base_cuad_en

* Add model 2023-12-22-roberta_base_squad_i8_f32_p90_en

* Add model 2023-12-22-roberta_large_nq_mrc_en

* Add model 2023-12-22-roberta_finetuned_qa_policy_2_ppsingh_en

* Add model 2023-12-22-roberta_base_diffuserconfuser_en

* Add model 2023-12-22-roberta_base_squad2_autoevaluate_en

* Add model 2023-12-22-roberta_large_few_shot_k_512_finetuned_squad_seed_2_en

* Add model 2023-12-23-tinyroberta_mrqa_en

* Add model 2023-12-23-roberta_base_finetuned_squad_roberta_v3_en

* Add model 2023-12-23-roberta_finetuned_timeentities_en

* Add model 2023-12-23-roberta_finetuned_subjqa_movies_2_ssmustak_en

* Add model 2023-12-23-tinyroberta_squad_spanish_en

* Add model 2023-12-23-nd_qna_en

* Add model 2023-12-23-roberta_base_squad_i8_f16_p60_en

* Add model 2023-12-23-cs4248_roberta_w_newsqa_epoch_1_en

* Add model 2023-12-23-roberta_checkpoint_finetuned_squad_angelag_en

* Add model 2023-12-23-question_answering_coqa_en

* Add model 2023-12-23-carbonblog_en

* Add model 2023-12-23-roberta_base_squad_i8_f32_p99_en

* Add model 2023-12-23-recipe_triplet_roberta_base_timestep_squadv2_epochs_3_en

* Add model 2023-12-23-roberta_base_squad2_newbreaker_en

* Add model 2023-12-23-recipe_triplet_roberta_base_easy_timestep_squadv2_epochs_3_en

* Add model 2023-12-23-scan_u_doc_question_answer_en

* Add model 2023-12-23-questionansweringnlphw4_en

* Add model 2023-12-23-roberta_base_squad_i8_f16_p55_en

* Add model 2023-12-23-finqa_model_en

* Add model 2023-12-23-roberta_base_squad_i8_f16_p95_en

* Add model 2023-12-23-roberta_base_squad_i8_f16_p90_en

* Add model 2023-12-23-roberta_finetuned_subjqa_movies_2_dayyannxb_en

* Add model 2023-12-23-roberta_base_squad_i8_f32_p75_en

* Add model 2023-12-23-slovakbert_skquad_en

* Add model 2023-12-23-edtech_lightweight_en

* Add model 2023-12-23-trainer_english_en

* Add model 2023-12-23-deepset_roberta_base_squad2_orkg_unchanged_5e_05_en

* Add model 2023-12-23-robbert_v2_dutch_base_finetuned_squad_en

* Add model 2023-12-23-cqi_brain_memory_question_anwser_portuguese_v0_en

* Add model 2023-12-23-recipe_step_manip_step_label_roberta_base_squadv2_epochs_3_en

* Add model 2023-12-23-bankstatementmodelver8_en

* Add model 2023-12-23-avishkaarak_ekta_hindi_en

* Add model 2023-12-23-minilmv2_l12_h384_from_roberta_large_mrqa_en

* Add model 2023-12-23-qa_refined_questions_with_random_data_24k_16_08_en

* Add model 2023-12-23-roberta_base_squad_i8_f16_p65_en

* Add model 2023-12-23-roberta_base_coqa_rooftopcoder_en

* Add model 2023-12-23-robbert_v2_dutch_base_squad_dutch_en

* Add model 2023-12-23-roberta_finetuned_subjqa_movies_2_kalyankumar_en

* Add model 2023-12-23-roberta_base_fine_tuned_recipeqa_modified_en

* Add model 2023-12-23-otterchat2_en

* Add model 2023-12-23-roberta_large_few_shot_k_512_finetuned_squad_seed_0_en

* Add model 2023-12-23-question_answering_roberta_anu_squad_v2_en

* Add model 2023-12-23-roberta_fine_tuned_stanford_en

* Add model 2023-12-23-roberta_finetuned_last_company_last_designation_en

* Add model 2023-12-23-robbert_v2_en

* Add model 2023-12-23-dynamic_minilmv2_l6_h384_squad1_1_int8_static_en

* Add model 2023-12-23-roberta_base_squad2_distilled_small_cuad_en

* Add model 2023-12-23-roberta_base_spanish_squades_modelo_robertav0_en

* Add model 2023-12-23-roberta_base_finetuned_squad2_iproject_10_en

* Add model 2023-12-23-roberta_base_covid_en

* Add model 2023-12-23-roberta_finetuned_subjqa_movies2_en

* Add model 2023-12-23-roberta_base_squad2_p20_en

* Add model 2023-12-23-robertita_cased_finetuned_quales_en

* Add model 2023-12-23-roberta_large_squad_fine_tuned_8e_en

* Add model 2023-12-23-docalog_en

* Add model 2023-12-23-roberta_finetuned_subjqa_movies_2_pks20_en

* Add model 2023-12-23-output_mask_step_pretraining_plus_contr_roberta_large_both_epochs_1_en

* Add model 2023-12-23-output_mask_two_steps_pretraining_plus_contr_roberta_large_both_triplets_epochs_1_en

* Add model 2023-12-23-roberta_fintuned_squadv2_covidqa_en

* Add model 2023-12-23-tinyroberta_squad2_finetuned_squad_en

* Add model 2023-12-23-roberta_base_finetuned_squad_v1_1_en

* Add model 2023-12-23-roberta_finetuned_en

* Add model 2023-12-23-roberta_base_coffee20230108_en

* Add model 2023-12-23-recipe_triplet_roberta_base_squadv2_epochs_3_en

* Add model 2023-12-23-iotnation_companyname_and_location_extraction_qa_model_1_4_roberta_en

* Add model 2023-12-23-roberta_qa_finetuned_subjqa_movies_2_rizal_en

* Add model 2023-12-23-question_answering_camembert_en

* Add model 2023-12-23-output_mask_two_steps_pretraining_plus_contr_roberta_model_from_pretrained_large_easy_epochs_1_en

* Add model 2023-12-23-roberta_finetuned_subjqa_2_en

* Add model 2023-12-23-sinbert_large_finetuned_sinquad_v3_en

* Add model 2023-12-23-qa_synth_data_with_unanswerable_23_aug_roberta_base_squad2_en

* Add model 2023-12-23-zero_docalog_en

* Add model 2023-12-23-roberta_large_squad_finetune_covidqa_direct_en

* Add model 2023-12-23-plm_qa_en

* Add model 2023-12-23-roberta_base_finetuned_squad_96harsh56_en

* Add model 2023-12-23-roberta_finetuned_subjqa_hotels_en

* Add model 2023-12-23-roberta_base_finetuned_squad_roberta_en

* Add model 2023-12-23-bert_finetuned_squad22_en

* Add model 2023-12-23-qa_finetuned_en

* Add model 2023-12-23-roberta_finetuned_covidqa_en

* Add model 2023-12-23-qa_refined_data_14k_15_08_en

* Add model 2023-12-23-roberta_finetuned_subjqa_movies_2_ljl2020_en

* Add model 2023-12-23-qa_roberta_squad2_group11_en

* Add model 2023-12-23-autotrain_swot_roberta_base_distilled_3268791189_en

* Add model 2023-12-23-roberta_finetuned_qa_policy_0_1_en

* Add model 2023-12-23-roberta_base_squadv2_zohaib99k_en

* Add model 2023-12-23-autotrain_swot_roberta_distilled_45_3269391224_en

* Add model 2023-12-23-qa_synthetic_data_only_16_aug_base_en

* Add model 2023-12-23-sinbert_large_finetuned_sinquad_v4_en

* Add model 2023-12-23-roberta_finetune_qa_cuad_en

* Add model 2023-12-23-roberta_vietnamese_mlqa_en

* Add model 2023-12-23-qna_model_roberta_en

* Add model 2023-12-23-distil_roberta_qa_en

* Add model 2023-12-23-roberta_base_finetuned_cuad_en

* Add model 2023-12-23-bert_finetuned_squad_dflcmu_en

* Add model 2023-12-23-roberta_base_bne_modelo_prueba_en

* Add model 2023-12-23-mrr_roberta_without_squal_15k_en

* Add model 2023-12-23-roberta_base_squad2_qa_model_en

* Add model 2023-12-23-robbert_v2_dutch_ext_qa_en

* Add model 2023-12-23-roberta_finetuned_qa_reqzarv0_en

* Add model 2023-12-23-roberta_base_squad2_qa_en

* Add model 2023-12-23-final_argument_manager_en

* Add model 2023-12-23-roberta_finetuned_subjqa_movies_2_mimi_2023_en

* Add model 2023-12-23-roberta_base_qa_finetuned_subjqa_movies_rizal_en

* Add model 2023-12-23-lease_qa_en

* Add model 2023-12-23-roberta_base_finetuned_squad_v1_sooolee_en

* Add model 2023-12-23-distilroberta_base_finetuned_wikitext2_squadsmall_qa_wandb4_en

* Add model 2023-12-23-questionansweringmodel_en

* Add model 2023-12-23-roberta_large_squadv2_en

* Add model 2023-12-23-rbt_en

* Add model 2023-12-23-roberta_finetuned_subjqa_movies_2_mahmudul_unsw_en

* Add model 2023-12-23-roberta_base_finetuned_squad_v1_saadkazaz_en

* Add model 2023-12-23-roberta_base_finetuned_squad_maarten_k_en

* Add model 2023-12-23-qamodel2_en

* Add model 2023-12-23-sinbert_large_finetuned_sinquad_v2_en

* Add model 2023-12-23-roberta_base_finetune_subjqa_hoang14_en

* Add model 2023-12-23-roberta_base_managementengineer_en

* Add model 2023-12-23-roberta_finetuned_subjqa_movies_2_gianvito_en

* Add model 2023-12-23-roberta_base_squad2_coffee20230108_en

* Add model 2023-12-23-roberta_base_finetuned_squad_roberta_3_en

* Add model 2023-12-23-hyunjoo_awesome_qa_model_en

* Add model 2023-12-23-mrr_qa_15k_finetuned_on_random_data_en

* Add model 2023-12-23-roberta_base_bne_modelo_cf_en

* Add model 2023-12-23-wechsel_saquad20_en

* Add model 2023-12-23-roberta_finetuned_subjqa_movies_2_shashidharakc_en

* Add model 2023-12-23-roberta_finetuned_qa_policy_short_en

* Add model 2023-12-23-roberta_finetuned_disaster_type_dy_en

* Add model 2023-12-23-kaz_roberta_squad2_kaz_en

* Add model 2023-12-23-robbertje_1_gb_shuffled_finetuned_squad_en

* Add model 2023-12-23-xlmbert_finetuned_squad2_en

* Add model 2023-12-23-roberta_base_squad2_mf_finetune_en

* Add model 2023-12-23-roberta_base_bne_finetuned_qa_sqac_en

* Add model 2023-12-23-roberta_base_squad2_p30_en

* Add model 2023-12-23-roberta_finetuned_squad_v2_en

* Add model 2023-12-23-roberta_base_finetuned_squad_deepakrish_en

* Add model 2023-12-23-roberta_large_bne_finetuned_qa_tar_en

* Add model 2023-12-23-icebert_finetuned_nqiiv_1_1_en

* Add model 2023-12-23-roberta_base_squad2_finetuned_covid_en

* Add model 2023-12-23-xlmbert_finetuned13kdata_squad_en

* Add model 2023-12-23-roberta_finetuned_subjqa_movies_2_magdy101_en

* Add model 2023-12-23-roberta_finetuned_squad_en

* Add model 2023-12-23-firstmodel_en

* Add model 2023-12-23-oneapi_roberta_qa_model_kaggle_2_en

* Add model 2023-12-24-roberta_vanande_en

* Add model 2023-12-24-roberta_small_base_squad_en

* Add model 2023-12-24-output_only_htm_fpdm_roberta_en

* Add model 2023-12-24-roberta_squad_covid_qa_en

* Add model 2023-12-24-xlmbert_finetuned13kdata_noprocessed_squad_en

* Add model 2023-12-24-roberta_checkpoint_finetuned_squad_jasonplein_en

* Add model 2023-12-24-output_htm_fpdm_roberta_en

* Add model 2023-12-24-autotrain_clinics_52256123143_en

* Add model 2023-12-24-burmese_awesome_qa_model_danzz06_en

* Add model 2023-12-24-lease100_en

* Add model 2023-12-24-roberta_base_coffee20230113_en

* Add model 2023-12-24-roberta_base_finetuned_squad_sonalh_en

* Add model 2023-12-24-roberta_qa_finetuned_en

* Add model 2023-12-24-xlmbert_finetuned_squad1_en

* Add model 2023-12-24-roberta_finetuned_subjqa_movies_2_merthacioglu_en

* Add model 2023-12-24-distiled_roberta_squad2_qa_en

* Add model 2023-12-24-roberta_finetuned_subjqa_movies_2_abhyantriki_en

* Add model 2023-12-24-cs4248_roberta_wolof_search_ordered_epoch_1_en

* Add model 2023-12-24-roberta_base_finetuned_squad_ahcene_ikram_en

* Add model 2023-12-24-roberta_base_bne_finetuned_qa_mlqa_en

* Add model 2023-12-24-roberta_base_squadv2_freddyyy_en

* Add model 2023-12-24-roberta_squad2_finetuned_covidqa_en

* Add model 2023-12-24-icebert_finetuned_squad_10_en

* Add model 2023-12-24-roberta_finetuned_squad_maarten_k_en

* Add model 2023-12-24-roberta_finetuned_qa_policy_2_peter2000_en

* Add model 2023-12-24-autotrain_qa_roberta_2791682386_en

* Add model 2023-12-24-roberta_finetuned_qa_policy_long_en

* Add model 2023-12-24-roberta_base_squad2_am_infoweb_en

* Add model 2023-12-24-roberta_finetuned_subjqa_movies_1_en

* Add model 2023-12-24-polyrocketmatt_irse_model_en

* Add model 2023-12-24-roberta_base_test_en

* Add model 2023-12-24-roberta_base_bne_finetuned_qa_tar_en

* Add model 2023-12-24-bertin_roberta_base_spanish_finetuned_qa_tar_en

* Add model 2023-12-24-bertin_roberta_base_spanish_finetuned_qa_sqac_en

* Add model 2023-12-24-maria_sqac_uned_en

* Add model 2023-12-24-roberta_base_finetuned_squad2_0_en

* Add model 2023-12-24-fine_tuned_roberta_en

* Add model 2023-12-24-allenai_biomed_roberta_base_emrqa_en

* Add model 2023-12-24-yash_rupc_4_4_true__roberta_model_squad2_0_en

* Add model 2023-12-24-roberta_base_squad2_p80_en

* Add model 2023-12-24-roberta_qa_finetuned_2_en

* Add model 2023-12-24-squad_clip_text_8_en

* Add model 2023-12-24-roberta_indosquadv2_1691466312_8_2e_06_0_01_5_en

* Add model 2023-12-24-roberta_finetuned_subjqa_movies_2_tumbleweed_en

* Add model 2023-12-24-robbert_lemmatized_en

* Add model 2023-12-24-roberta_base_squad2_law_en

* Add model 2023-12-24-qa_synthetic_data_only_18_aug_roberta_base_en

* Add model 2023-12-24-roberta_base_squad2_finetuned_squad2_en

* Add model 2023-12-24-extractspan_distilberta_pieroni_altieri_butt_en

* Add model 2023-12-24-squad_mask_1_oriya_2_plus_contr_recipe_halves_recipes_roberta_base_en

* Add model 2023-12-24-roberta_base_bne_bioasq_es

* Add model 2023-12-24-qa_synthetic_data_only_17_aug_base_en

* Add model 2023-12-24-roberta_finetuned_subjqa_movies_2_sahil121_en

* Add model 2023-12-24-autotrain_roberta_qa_spanish_42804109318_en

* Add model 2023-12-24-roberta_base_uy22_cased_finetuned_nlquad_en

* Add model 2023-12-24-qa_refined_questions_with_random_data_24k_15_08_en

* Add model 2023-12-24-roberta_base_malay_marco_mod_en

* Add model 2023-12-24-cs4248_roberta_wolof_search_epoch_1_en

* Add model 2023-12-24-roberta_base_squad_ahcene_ikram_en

* Add model 2023-12-24-roberta_finetuned_subjqa_movies_2_itsahyadav_en

* Add model 2023-12-24-robbert_preprocessed_both_en

* Add model 2023-12-24-algmonquestingansweringmodel_base_en

---------

Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com>
  • Loading branch information
jsl-models and ahmedlone127 authored Dec 24, 2023
1 parent 6c15fc8 commit 6e8bb56
Show file tree
Hide file tree
Showing 1,714 changed files with 165,147 additions and 0 deletions.
97 changes: 97 additions & 0 deletions docs/_posts/ahmedlone127/2023-12-18-ag_news_classifier_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English ag_news_classifier DistilBertForSequenceClassification from rajkumarrrk
author: John Snow Labs
name: ag_news_classifier
date: 2023-12-18
tags: [bert, en, open_source, sequence_classification, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.2.0
spark_version: 3.0
supported: true
engine: onnx
annotator: DistilBertForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained DistilBertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ag_news_classifier` is a English model originally trained by rajkumarrrk.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ag_news_classifier_en_5.2.0_3.0_1702941363076.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ag_news_classifier_en_5.2.0_3.0_1702941363076.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

sequenceClassifier = DistilBertForSequenceClassification.pretrained("ag_news_classifier","en")\
.setInputCols(["document","token"])\
.setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)

```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = DistilBertForSequenceClassification.pretrained("ag_news_classifier","en")
.setInputCols(Array("document","token"))
.setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|ag_news_classifier|
|Compatibility:|Spark NLP 5.2.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|249.5 MB|

## References

https://huggingface.co/rajkumarrrk/ag-news-classifier
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English ai_day_distilbert_base_uncased_finetuned_cola DistilBertForSequenceClassification from younes9
author: John Snow Labs
name: ai_day_distilbert_base_uncased_finetuned_cola
date: 2023-12-18
tags: [bert, en, open_source, sequence_classification, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.2.0
spark_version: 3.0
supported: true
engine: onnx
annotator: DistilBertForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained DistilBertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`ai_day_distilbert_base_uncased_finetuned_cola` is a English model originally trained by younes9.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/ai_day_distilbert_base_uncased_finetuned_cola_en_5.2.0_3.0_1702933763158.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/ai_day_distilbert_base_uncased_finetuned_cola_en_5.2.0_3.0_1702933763158.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

sequenceClassifier = DistilBertForSequenceClassification.pretrained("ai_day_distilbert_base_uncased_finetuned_cola","en")\
.setInputCols(["document","token"])\
.setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)

```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = DistilBertForSequenceClassification.pretrained("ai_day_distilbert_base_uncased_finetuned_cola","en")
.setInputCols(Array("document","token"))
.setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|ai_day_distilbert_base_uncased_finetuned_cola|
|Compatibility:|Spark NLP 5.2.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|249.4 MB|

## References

https://huggingface.co/younes9/AI-DAY-distilbert-base-uncased-finetuned-cola
97 changes: 97 additions & 0 deletions docs/_posts/ahmedlone127/2023-12-18-airlinesentiment_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English airlinesentiment DistilBertForSequenceClassification from PDatt
author: John Snow Labs
name: airlinesentiment
date: 2023-12-18
tags: [bert, en, open_source, sequence_classification, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.2.0
spark_version: 3.0
supported: true
engine: onnx
annotator: DistilBertForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained DistilBertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`airlinesentiment` is a English model originally trained by PDatt.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/airlinesentiment_en_5.2.0_3.0_1702928222574.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/airlinesentiment_en_5.2.0_3.0_1702928222574.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

sequenceClassifier = DistilBertForSequenceClassification.pretrained("airlinesentiment","en")\
.setInputCols(["document","token"])\
.setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)

```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = DistilBertForSequenceClassification.pretrained("airlinesentiment","en")
.setInputCols(Array("document","token"))
.setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|airlinesentiment|
|Compatibility:|Spark NLP 5.2.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|249.5 MB|

## References

https://huggingface.co/PDatt/airlinesentiment
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English amazon_review_sentiment_analysis2 DistilBertForSequenceClassification from Christian2903
author: John Snow Labs
name: amazon_review_sentiment_analysis2
date: 2023-12-18
tags: [bert, en, open_source, sequence_classification, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.2.0
spark_version: 3.0
supported: true
engine: onnx
annotator: DistilBertForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained DistilBertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`amazon_review_sentiment_analysis2` is a English model originally trained by Christian2903.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/amazon_review_sentiment_analysis2_en_5.2.0_3.0_1702938441585.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/amazon_review_sentiment_analysis2_en_5.2.0_3.0_1702938441585.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

sequenceClassifier = DistilBertForSequenceClassification.pretrained("amazon_review_sentiment_analysis2","en")\
.setInputCols(["document","token"])\
.setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)

```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = DistilBertForSequenceClassification.pretrained("amazon_review_sentiment_analysis2","en")
.setInputCols(Array("document","token"))
.setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|amazon_review_sentiment_analysis2|
|Compatibility:|Spark NLP 5.2.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|249.5 MB|

## References

https://huggingface.co/Christian2903/amazon-review-sentiment-analysis2
Loading

0 comments on commit 6e8bb56

Please sign in to comment.