-
Notifications
You must be signed in to change notification settings - Fork 717
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
--------- Co-authored-by: gokhanturer <mgturer@gmail.com> --------- Co-authored-by: gadde5300 <gadde5300@gmail.com> Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com> Co-authored-by: gokhanturer <mgturer@gmail.com> Co-authored-by: Mary-Sci <meryemyildiz366@gmail.com> Co-authored-by: Meryem1425 <vildansarikaya25@gmail.com> Co-authored-by: Vildan <64216738+Meryem1425@users.noreply.github.com> Co-authored-by: Cabir40 <cabir4006@gmail.com> Co-authored-by: Merve Ertas Uslu <67653613+Mary-Sci@users.noreply.github.com> Co-authored-by: Zhengyi-Xiao <zxiao@fandm.edu>
- Loading branch information
1 parent
a9f1058
commit 5b7bd99
Showing
2,902 changed files
with
229,619 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
--- | ||
layout: model | ||
title: English T5ForConditionalGeneration Cased model (from philschmid) | ||
author: John Snow Labs | ||
name: t5_flan_base_samsum | ||
date: 2023-03-01 | ||
tags: [open_source, t5, flan, en, tensorflow] | ||
task: Text Generation | ||
language: en | ||
edition: Spark NLP 4.3.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: T5Transformer | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. flan-t5-base-samsum is a English model originally trained by philschmid. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_base_samsum_en_4.3.0_3.0_1677705397088.zip){:.button.button-orange} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_base_samsum_en_4.3.0_3.0_1677705397088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
documentAssembler = DocumentAssembler() \ | ||
.setInputCols("text") \ | ||
.setOutputCols("document") | ||
|
||
t5 = T5Transformer.pretrained("t5_flan_base_samsum","en") \ | ||
.setInputCols("document") \ | ||
.setOutputCol("answers") | ||
|
||
pipeline = Pipeline(stages=[documentAssembler, t5]) | ||
|
||
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") | ||
|
||
result = pipeline.fit(data).transform(data) | ||
``` | ||
```scala | ||
val documentAssembler = new DocumentAssembler() | ||
.setInputCols("text") | ||
.setOutputCols("document") | ||
|
||
val t5 = T5Transformer.pretrained("t5_flan_base_samsum","en") | ||
.setInputCols("document") | ||
.setOutputCol("answers") | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) | ||
|
||
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") | ||
|
||
val result = pipeline.fit(data).transform(data) | ||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|t5_flan_base_samsum| | ||
|Compatibility:|Spark NLP 4.3.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[documents]| | ||
|Output Labels:|[t5]| | ||
|Language:|en| | ||
|Size:|1.0 GB| | ||
|
||
## References | ||
|
||
https://huggingface.co/philschmid/flan-t5-base-samsum |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
--- | ||
layout: model | ||
title: English T5ForConditionalGeneration Cased model (from google) | ||
author: John Snow Labs | ||
name: t5_flan_base | ||
date: 2023-03-01 | ||
tags: [open_source, t5, flan, xx, tensorflow] | ||
task: Text Generation | ||
language: xx | ||
edition: Spark NLP 4.3.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: T5Transformer | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. flan-t5-base is a English model originally trained by google. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_base_xx_4.3.0_3.0_1677702524850.zip){:.button.button-orange} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_base_xx_4.3.0_3.0_1677702524850.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
documentAssembler = DocumentAssembler() \ | ||
.setInputCols("text") \ | ||
.setOutputCols("document") | ||
|
||
t5 = T5Transformer.pretrained("t5_flan_base","xx") \ | ||
.setInputCols("document") \ | ||
.setOutputCol("answers") | ||
|
||
pipeline = Pipeline(stages=[documentAssembler, t5]) | ||
|
||
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") | ||
|
||
result = pipeline.fit(data).transform(data) | ||
``` | ||
```scala | ||
val documentAssembler = new DocumentAssembler() | ||
.setInputCols("text") | ||
.setOutputCols("document") | ||
|
||
val t5 = T5Transformer.pretrained("t5_flan_base","xx") | ||
.setInputCols("document") | ||
.setOutputCol("answers") | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) | ||
|
||
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") | ||
|
||
val result = pipeline.fit(data).transform(data) | ||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|t5_flan_base| | ||
|Compatibility:|Spark NLP 4.3.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[documents]| | ||
|Output Labels:|[t5]| | ||
|Language:|xx| | ||
|Size:|1.0 GB| | ||
|
||
## References | ||
|
||
https://huggingface.co/google/flan-t5-base |
84 changes: 84 additions & 0 deletions
84
docs/_posts/Cabir40/2023-03-02-t5_flan_base_tldr_news_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
--- | ||
layout: model | ||
title: English T5ForConditionalGeneration Cased model (from ybagoury) | ||
author: John Snow Labs | ||
name: t5_flan_base_tldr_news | ||
date: 2023-03-02 | ||
tags: [open_source, t5, flan, en, tensorflow] | ||
task: Text Generation | ||
language: en | ||
edition: Spark NLP 4.3.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: T5Transformer | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. flan-t5-base-tldr_news is a English model originally trained by ybagoury. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_base_tldr_news_en_4.3.0_3.0_1677760144575.zip){:.button.button-orange} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_base_tldr_news_en_4.3.0_3.0_1677760144575.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
documentAssembler = DocumentAssembler() \ | ||
.setInputCols("text") \ | ||
.setOutputCols("document") | ||
|
||
t5 = T5Transformer.pretrained("t5_flan_base_tldr_news","en") \ | ||
.setInputCols("document") \ | ||
.setOutputCol("answers") | ||
|
||
pipeline = Pipeline(stages=[documentAssembler, t5]) | ||
|
||
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text") | ||
|
||
result = pipeline.fit(data).transform(data) | ||
``` | ||
```scala | ||
val documentAssembler = new DocumentAssembler() | ||
.setInputCols("text") | ||
.setOutputCols("document") | ||
|
||
val t5 = T5Transformer.pretrained("t5_flan_base_tldr_news","en") | ||
.setInputCols("document") | ||
.setOutputCol("answers") | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, t5)) | ||
|
||
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text") | ||
|
||
val result = pipeline.fit(data).transform(data) | ||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|t5_flan_base_tldr_news| | ||
|Compatibility:|Spark NLP 4.3.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[documents]| | ||
|Output Labels:|[t5]| | ||
|Language:|en| | ||
|Size:|1.0 GB| | ||
|
||
## References | ||
|
||
https://huggingface.co/ybagoury/flan-t5-base-tldr_news |
96 changes: 96 additions & 0 deletions
96
docs/_posts/Mary-Sci/2023-03-12-deberta_embeddings_cowese_base_es.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
--- | ||
layout: model | ||
title: Spanish Deberta Embeddings model (from plncmm) | ||
author: John Snow Labs | ||
name: deberta_embeddings_cowese_base | ||
date: 2023-03-12 | ||
tags: [deberta, open_source, deberta_embeddings, debertav2formaskedlm, es, tensorflow] | ||
task: Embeddings | ||
language: es | ||
edition: Spark NLP 4.3.1 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: DeBertaEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained DebertaEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `mdeberta-cowese-base-es` is a Spanish model originally trained by `plncmm`. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/deberta_embeddings_cowese_base_es_4.3.1_3.0_1678657528702.zip){:.button.button-orange} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/deberta_embeddings_cowese_base_es_4.3.1_3.0_1678657528702.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
|
||
```python | ||
documentAssembler = DocumentAssembler() \ | ||
.setInputCols(["text"]) \ | ||
.setOutputCols("document") | ||
|
||
tokenizer = Tokenizer() \ | ||
.setInputCols("document") \ | ||
.setOutputCol("token") | ||
|
||
embeddings = DeBertaEmbeddings.pretrained("deberta_embeddings_cowese_base","es") \ | ||
.setInputCols(["document", "token"]) \ | ||
.setOutputCol("embeddings") \ | ||
.setCaseSensitive(True) | ||
|
||
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings]) | ||
|
||
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text") | ||
|
||
result = pipeline.fit(data).transform(data) | ||
``` | ||
```scala | ||
val documentAssembler = new DocumentAssembler() | ||
.setInputCols(Array("text")) | ||
.setOutputCols(Array("document")) | ||
|
||
val tokenizer = new Tokenizer() | ||
.setInputCols("document") | ||
.setOutputCol("token") | ||
|
||
val embeddings = DeBertaEmbeddings.pretrained("deberta_embeddings_cowese_base","es") | ||
.setInputCols(Array("document", "token")) | ||
.setOutputCol("embeddings") | ||
.setCaseSensitive(true) | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings)) | ||
|
||
val data = Seq("I love Spark NLP").toDS.toDF("text") | ||
|
||
val result = pipeline.fit(data).transform(data) | ||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|deberta_embeddings_cowese_base| | ||
|Compatibility:|Spark NLP 4.3.1+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[sentence, token]| | ||
|Output Labels:|[embeddings]| | ||
|Language:|es| | ||
|Size:|1.0 GB| | ||
|Case sensitive:|false| | ||
|
||
## References | ||
|
||
https://huggingface.co/plncmm/mdeberta-cowese-base-es |
Oops, something went wrong.