Skip to content

Commit

Permalink
Models hub (#13651)
Browse files Browse the repository at this point in the history
---------

Co-authored-by: gokhanturer <mgturer@gmail.com>

---------

Co-authored-by: gadde5300 <gadde5300@gmail.com>
Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com>
Co-authored-by: gokhanturer <mgturer@gmail.com>
Co-authored-by: Mary-Sci <meryemyildiz366@gmail.com>
Co-authored-by: Meryem1425 <vildansarikaya25@gmail.com>
Co-authored-by: Vildan <64216738+Meryem1425@users.noreply.github.com>
Co-authored-by: Cabir40 <cabir4006@gmail.com>
Co-authored-by: Merve Ertas Uslu <67653613+Mary-Sci@users.noreply.github.com>
Co-authored-by: Zhengyi-Xiao <zxiao@fandm.edu>
  • Loading branch information
10 people authored Mar 14, 2023
1 parent a9f1058 commit 5b7bd99
Show file tree
Hide file tree
Showing 2,902 changed files with 229,619 additions and 0 deletions.
84 changes: 84 additions & 0 deletions docs/_posts/Cabir40/2023-03-01-t5_flan_base_samsum_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
---
layout: model
title: English T5ForConditionalGeneration Cased model (from philschmid)
author: John Snow Labs
name: t5_flan_base_samsum
date: 2023-03-01
tags: [open_source, t5, flan, en, tensorflow]
task: Text Generation
language: en
edition: Spark NLP 4.3.0
spark_version: 3.0
supported: true
engine: tensorflow
annotator: T5Transformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. flan-t5-base-samsum is a English model originally trained by philschmid.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_base_samsum_en_4.3.0_3.0_1677705397088.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_base_samsum_en_4.3.0_3.0_1677705397088.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
documentAssembler = DocumentAssembler() \
.setInputCols("text") \
.setOutputCols("document")

t5 = T5Transformer.pretrained("t5_flan_base_samsum","en") \
.setInputCols("document") \
.setOutputCol("answers")

pipeline = Pipeline(stages=[documentAssembler, t5])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
```
```scala
val documentAssembler = new DocumentAssembler()
.setInputCols("text")
.setOutputCols("document")

val t5 = T5Transformer.pretrained("t5_flan_base_samsum","en")
.setInputCols("document")
.setOutputCol("answers")

val pipeline = new Pipeline().setStages(Array(documentAssembler, t5))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|t5_flan_base_samsum|
|Compatibility:|Spark NLP 4.3.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[t5]|
|Language:|en|
|Size:|1.0 GB|

## References

https://huggingface.co/philschmid/flan-t5-base-samsum
84 changes: 84 additions & 0 deletions docs/_posts/Cabir40/2023-03-01-t5_flan_base_xx.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
---
layout: model
title: English T5ForConditionalGeneration Cased model (from google)
author: John Snow Labs
name: t5_flan_base
date: 2023-03-01
tags: [open_source, t5, flan, xx, tensorflow]
task: Text Generation
language: xx
edition: Spark NLP 4.3.0
spark_version: 3.0
supported: true
engine: tensorflow
annotator: T5Transformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. flan-t5-base is a English model originally trained by google.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_base_xx_4.3.0_3.0_1677702524850.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_base_xx_4.3.0_3.0_1677702524850.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
documentAssembler = DocumentAssembler() \
.setInputCols("text") \
.setOutputCols("document")

t5 = T5Transformer.pretrained("t5_flan_base","xx") \
.setInputCols("document") \
.setOutputCol("answers")

pipeline = Pipeline(stages=[documentAssembler, t5])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
```
```scala
val documentAssembler = new DocumentAssembler()
.setInputCols("text")
.setOutputCols("document")

val t5 = T5Transformer.pretrained("t5_flan_base","xx")
.setInputCols("document")
.setOutputCol("answers")

val pipeline = new Pipeline().setStages(Array(documentAssembler, t5))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|t5_flan_base|
|Compatibility:|Spark NLP 4.3.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[t5]|
|Language:|xx|
|Size:|1.0 GB|

## References

https://huggingface.co/google/flan-t5-base
84 changes: 84 additions & 0 deletions docs/_posts/Cabir40/2023-03-02-t5_flan_base_tldr_news_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
---
layout: model
title: English T5ForConditionalGeneration Cased model (from ybagoury)
author: John Snow Labs
name: t5_flan_base_tldr_news
date: 2023-03-02
tags: [open_source, t5, flan, en, tensorflow]
task: Text Generation
language: en
edition: Spark NLP 4.3.0
spark_version: 3.0
supported: true
engine: tensorflow
annotator: T5Transformer
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. flan-t5-base-tldr_news is a English model originally trained by ybagoury.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/t5_flan_base_tldr_news_en_4.3.0_3.0_1677760144575.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/t5_flan_base_tldr_news_en_4.3.0_3.0_1677760144575.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
documentAssembler = DocumentAssembler() \
.setInputCols("text") \
.setOutputCols("document")

t5 = T5Transformer.pretrained("t5_flan_base_tldr_news","en") \
.setInputCols("document") \
.setOutputCol("answers")

pipeline = Pipeline(stages=[documentAssembler, t5])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
```
```scala
val documentAssembler = new DocumentAssembler()
.setInputCols("text")
.setOutputCols("document")

val t5 = T5Transformer.pretrained("t5_flan_base_tldr_news","en")
.setInputCols("document")
.setOutputCol("answers")

val pipeline = new Pipeline().setStages(Array(documentAssembler, t5))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|t5_flan_base_tldr_news|
|Compatibility:|Spark NLP 4.3.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[t5]|
|Language:|en|
|Size:|1.0 GB|

## References

https://huggingface.co/ybagoury/flan-t5-base-tldr_news
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
---
layout: model
title: Spanish Deberta Embeddings model (from plncmm)
author: John Snow Labs
name: deberta_embeddings_cowese_base
date: 2023-03-12
tags: [deberta, open_source, deberta_embeddings, debertav2formaskedlm, es, tensorflow]
task: Embeddings
language: es
edition: Spark NLP 4.3.1
spark_version: 3.0
supported: true
engine: tensorflow
annotator: DeBertaEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained DebertaEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `mdeberta-cowese-base-es` is a Spanish model originally trained by `plncmm`.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/deberta_embeddings_cowese_base_es_4.3.1_3.0_1678657528702.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/deberta_embeddings_cowese_base_es_4.3.1_3.0_1678657528702.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}

```python
documentAssembler = DocumentAssembler() \
.setInputCols(["text"]) \
.setOutputCols("document")

tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")

embeddings = DeBertaEmbeddings.pretrained("deberta_embeddings_cowese_base","es") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings") \
.setCaseSensitive(True)

pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
```
```scala
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val embeddings = DeBertaEmbeddings.pretrained("deberta_embeddings_cowese_base","es")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
.setCaseSensitive(true)

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("I love Spark NLP").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|deberta_embeddings_cowese_base|
|Compatibility:|Spark NLP 4.3.1+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[sentence, token]|
|Output Labels:|[embeddings]|
|Language:|es|
|Size:|1.0 GB|
|Case sensitive:|false|

## References

https://huggingface.co/plncmm/mdeberta-cowese-base-es
Loading

0 comments on commit 5b7bd99

Please sign in to comment.