-
Notifications
You must be signed in to change notification settings - Fork 718
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Sparknlp 876: Introducing LLAMA2 (#14148)
* introducing LLAMA2 * Added option to read model from model path to onnx wrapper * Added option to read model from model path to onnx wrapper * updated text description * LLAMA2 python API * added method to save onnx_data * added position ids * - updated Generate.scala to accept onnx tensors - added beam search support for LLAMA2 * updated max input length * updated python default params changed test to slow test * fixed serialization bug
- Loading branch information
Showing
13 changed files
with
1,331 additions
and
45 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
343 changes: 343 additions & 0 deletions
343
python/sparknlp/annotator/seq2seq/llama2_transformer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,343 @@ | ||
# Copyright 2017-2022 John Snow Labs | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Contains classes for the LLAMA2Transformer.""" | ||
|
||
from sparknlp.common import * | ||
|
||
|
||
class LLAMA2Transformer(AnnotatorModel, HasBatchedAnnotate, HasEngine): | ||
"""Llama 2: Open Foundation and Fine-Tuned Chat Models | ||
The Llama 2 release introduces a family of pretrained and fine-tuned LLMs, ranging in scale | ||
from 7B to 70B parameters (7B, 13B, 70B). The pretrained models come with significant | ||
improvements over the Llama 1 models, including being trained on 40% more tokens, having a | ||
much longer context length (4k tokens 🤯), and using grouped-query attention for fast | ||
inference of the 70B model🔥! | ||
However, the most exciting part of this release is the fine-tuned models (Llama 2-Chat), which | ||
have been optimized for dialogue applications using Reinforcement Learning from Human Feedback | ||
(RLHF). Across a wide range of helpfulness and safety benchmarks, the Llama 2-Chat models | ||
perform better than most open models and achieve comparable performance to ChatGPT according | ||
to human evaluations. | ||
Pretrained models can be loaded with :meth:`.pretrained` of the companion | ||
object: | ||
>>> llama2 = LLAMA2Transformer.pretrained() \\ | ||
... .setInputCols(["document"]) \\ | ||
... .setOutputCol("generation") | ||
The default model is ``"llam2-7b"``, if no name is provided. For available | ||
pretrained models please see the `Models Hub | ||
<https://sparknlp.org/models?q=llama2>`__. | ||
====================== ====================== | ||
Input Annotation types Output Annotation type | ||
====================== ====================== | ||
``DOCUMENT`` ``DOCUMENT`` | ||
====================== ====================== | ||
Parameters | ||
---------- | ||
configProtoBytes | ||
ConfigProto from tensorflow, serialized into byte array. | ||
minOutputLength | ||
Minimum length of the sequence to be generated, by default 0 | ||
maxOutputLength | ||
Maximum length of output text, by default 20 | ||
doSample | ||
Whether or not to use sampling; use greedy decoding otherwise, by default False | ||
temperature | ||
The value used to module the next token probabilities, by default 1.0 | ||
topK | ||
The number of highest probability vocabulary tokens to keep for | ||
top-k-filtering, by default 50 | ||
topP | ||
Top cumulative probability for vocabulary tokens, by default 1.0 | ||
If set to float < 1, only the most probable tokens with probabilities | ||
that add up to ``topP`` or higher are kept for generation. | ||
repetitionPenalty | ||
The parameter for repetition penalty, 1.0 means no penalty. , by default | ||
1.0 | ||
noRepeatNgramSize | ||
If set to int > 0, all ngrams of that size can only occur once, by | ||
default 0 | ||
ignoreTokenIds | ||
A list of token ids which are ignored in the decoder's output, by | ||
default [] | ||
Notes | ||
----- | ||
This is a very computationally expensive module especially on larger | ||
sequence. The use of an accelerator such as GPU is recommended. | ||
References | ||
---------- | ||
- `Llama 2: Open Foundation and Fine-Tuned Chat Models | ||
<https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/>`__ | ||
- https://github.com/facebookresearch/llama | ||
**Paper Abstract:** | ||
*In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned | ||
large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our | ||
fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models | ||
outperform open-source chat models on most benchmarks we tested, and based on our human | ||
evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. | ||
We provide a detailed description of our approach to fine-tuning and safety improvements of | ||
Llama 2-Chat in order to enable the community to build on our work and contribute to the | ||
responsible development of LLMs.* | ||
Examples | ||
-------- | ||
>>> import sparknlp | ||
>>> from sparknlp.base import * | ||
>>> from sparknlp.annotator import * | ||
>>> from pyspark.ml import Pipeline | ||
>>> documentAssembler = DocumentAssembler() \\ | ||
... .setInputCol("text") \\ | ||
... .setOutputCol("documents") | ||
>>> llama2 = LLAMA2Transformer.pretrained("llama2-7b") \\ | ||
... .setInputCols(["documents"]) \\ | ||
... .setMaxOutputLength(50) \\ | ||
... .setOutputCol("generation") | ||
>>> pipeline = Pipeline().setStages([documentAssembler, llama2]) | ||
>>> data = spark.createDataFrame([["My name is Leonardo."]]).toDF("text") | ||
>>> result = pipeline.fit(data).transform(data) | ||
>>> result.select("summaries.generation").show(truncate=False) | ||
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ||
|result | | ||
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ||
|[My name is Leonardo. I am a man of letters. I have been a man for many years. I was born in the year 1776. I came to the United States in 1776, and I have lived in the United Kingdom since 1776.]| | ||
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ||
""" | ||
|
||
name = "LLAMA2Transformer" | ||
|
||
inputAnnotatorTypes = [AnnotatorType.DOCUMENT] | ||
|
||
outputAnnotatorType = AnnotatorType.DOCUMENT | ||
|
||
|
||
configProtoBytes = Param(Params._dummy(), | ||
"configProtoBytes", | ||
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", | ||
TypeConverters.toListInt) | ||
|
||
minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", | ||
typeConverter=TypeConverters.toBoolean) | ||
|
||
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", | ||
typeConverter=TypeConverters.toFloat) | ||
|
||
topK = Param(Params._dummy(), "topK", | ||
"The number of highest probability vocabulary tokens to keep for top-k-filtering", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
topP = Param(Params._dummy(), "topP", | ||
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation", | ||
typeConverter=TypeConverters.toFloat) | ||
|
||
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", | ||
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details", | ||
typeConverter=TypeConverters.toFloat) | ||
|
||
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", | ||
"If set to int > 0, all ngrams of that size can only occur once", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", | ||
"A list of token ids which are ignored in the decoder's output", | ||
typeConverter=TypeConverters.toListInt) | ||
|
||
|
||
def setIgnoreTokenIds(self, value): | ||
"""A list of token ids which are ignored in the decoder's output. | ||
Parameters | ||
---------- | ||
value : List[int] | ||
The words to be filtered out | ||
""" | ||
return self._set(ignoreTokenIds=value) | ||
|
||
def setConfigProtoBytes(self, b): | ||
"""Sets configProto from tensorflow, serialized into byte array. | ||
Parameters | ||
---------- | ||
b : List[int] | ||
ConfigProto from tensorflow, serialized into byte array | ||
""" | ||
return self._set(configProtoBytes=b) | ||
|
||
def setMinOutputLength(self, value): | ||
"""Sets minimum length of the sequence to be generated. | ||
Parameters | ||
---------- | ||
value : int | ||
Minimum length of the sequence to be generated | ||
""" | ||
return self._set(minOutputLength=value) | ||
|
||
def setMaxOutputLength(self, value): | ||
"""Sets maximum length of output text. | ||
Parameters | ||
---------- | ||
value : int | ||
Maximum length of output text | ||
""" | ||
return self._set(maxOutputLength=value) | ||
|
||
def setDoSample(self, value): | ||
"""Sets whether or not to use sampling, use greedy decoding otherwise. | ||
Parameters | ||
---------- | ||
value : bool | ||
Whether or not to use sampling; use greedy decoding otherwise | ||
""" | ||
return self._set(doSample=value) | ||
|
||
def setTemperature(self, value): | ||
"""Sets the value used to module the next token probabilities. | ||
Parameters | ||
---------- | ||
value : float | ||
The value used to module the next token probabilities | ||
""" | ||
return self._set(temperature=value) | ||
|
||
def setTopK(self, value): | ||
"""Sets the number of highest probability vocabulary tokens to keep for | ||
top-k-filtering. | ||
Parameters | ||
---------- | ||
value : int | ||
Number of highest probability vocabulary tokens to keep | ||
""" | ||
return self._set(topK=value) | ||
|
||
def setTopP(self, value): | ||
"""Sets the top cumulative probability for vocabulary tokens. | ||
If set to float < 1, only the most probable tokens with probabilities | ||
that add up to ``topP`` or higher are kept for generation. | ||
Parameters | ||
---------- | ||
value : float | ||
Cumulative probability for vocabulary tokens | ||
""" | ||
return self._set(topP=value) | ||
|
||
def setRepetitionPenalty(self, value): | ||
"""Sets the parameter for repetition penalty. 1.0 means no penalty. | ||
Parameters | ||
---------- | ||
value : float | ||
The repetition penalty | ||
References | ||
---------- | ||
See `Ctrl: A Conditional Transformer Language Model For Controllable | ||
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. | ||
""" | ||
return self._set(repetitionPenalty=value) | ||
|
||
def setNoRepeatNgramSize(self, value): | ||
"""Sets size of n-grams that can only occur once. | ||
If set to int > 0, all ngrams of that size can only occur once. | ||
Parameters | ||
---------- | ||
value : int | ||
N-gram size can only occur once | ||
""" | ||
return self._set(noRepeatNgramSize=value) | ||
|
||
@keyword_only | ||
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.LLAMA2Transformer", java_model=None): | ||
super(LLAMA2Transformer, self).__init__( | ||
classname=classname, | ||
java_model=java_model | ||
) | ||
self._setDefault( | ||
minOutputLength=0, | ||
maxOutputLength=20, | ||
doSample=False, | ||
temperature=0.6, | ||
topK=50, | ||
topP=0.9, | ||
repetitionPenalty=1.0, | ||
noRepeatNgramSize=0, | ||
ignoreTokenIds=[], | ||
batchSize=1 | ||
) | ||
|
||
@staticmethod | ||
def loadSavedModel(folder, spark_session): | ||
"""Loads a locally saved model. | ||
Parameters | ||
---------- | ||
folder : str | ||
Folder of the saved model | ||
spark_session : pyspark.sql.SparkSession | ||
The current SparkSession | ||
Returns | ||
------- | ||
LLAMA2Transformer | ||
The restored model | ||
""" | ||
from sparknlp.internal import _LLAMA2Loader | ||
jModel = _LLAMA2Loader(folder, spark_session._jsparkSession)._java_obj | ||
return LLAMA2Transformer(java_model=jModel) | ||
|
||
@staticmethod | ||
def pretrained(name="llama2-7b", lang="en", remote_loc=None): | ||
"""Downloads and loads a pretrained model. | ||
Parameters | ||
---------- | ||
name : str, optional | ||
Name of the pretrained model, by default "llama2-7b" | ||
lang : str, optional | ||
Language of the pretrained model, by default "en" | ||
remote_loc : str, optional | ||
Optional remote address of the resource, by default None. Will use | ||
Spark NLPs repositories otherwise. | ||
Returns | ||
------- | ||
LLAMA2Transformer | ||
The restored model | ||
""" | ||
from sparknlp.pretrained import ResourceDownloader | ||
return ResourceDownloader.downloadModel(LLAMA2Transformer, name, lang, remote_loc) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.