-
Notifications
You must be signed in to change notification settings - Fork 717
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* 2023-08-29-mpnet_embedding_tiny_random_mpnet_by_hf_internal_testing_en (#13949) * Add model 2023-08-29-mpnet_embedding_tiny_random_mpnet_by_hf_internal_testing_en * Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetformaskedlm_by_hf_tiny_model_private_en * Add model 2023-08-29-mpnet_embedding_burmese_awesome_setfit_model_en * Add model 2023-08-29-mpnet_embedding_github_issues_mpnet_southern_sotho_e10_en * Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetforquestionanswering_by_hf_tiny_model_private_en * Add model 2023-08-29-mpnet_embedding_multi_qa_mpnet_base_cos_v1_by_navteca_en * Add model 2023-08-29-mpnet_embedding_github_issues_preprocessed_mpnet_southern_sotho_e10_en * Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetfortokenclassification_by_hf_tiny_model_private_en * Add model 2023-08-29-mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers_en * Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetforsequenceclassification_by_hf_tiny_model_private_en * Add model 2023-08-29-mpnet_embedding_multi_qa_mpnet_base_cos_v1_by_sentence_transformers_en * Add model 2023-08-29-mpnet_embedding_setfit_alpaca_spanish_unprocessable_sample_detection_es * Add model 2023-08-29-mpnet_embedding_setfit_model_by_rajistics_en * Add model 2023-08-29-mpnet_embedding_multi_qa_mpnet_base_dot_v1_by_sentence_transformers_en * Add model 2023-08-29-mpnet_embedding_all_mpnet_base_v2_by_diptanuc_en * Add model 2023-08-29-mpnet_embedding_setfit_ethos_multilabel_example_by_lewtun_en * Add model 2023-08-29-mpnet_embedding_nli_mpnet_base_v2_by_sentence_transformers_en * Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetforquestionanswering_by_hf_internal_testing_en * Add model 2023-08-29-mpnet_embedding_setfit_model_by_pradipta11_en * Add model 2023-08-29-mpnet_embedding_multi_qa_mpnet_base_dot_v1_by_model_embeddings_en * Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetformaskedlm_by_hf_internal_testing_en * Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetfortokenclassification_by_hf_internal_testing_en * Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetmodel_by_hf_internal_testing_en * Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetmodel_by_hf_tiny_model_private_en * Add model 2023-08-29-mpnet_embedding_all_mpnet_base_v2_by_obrizum_en * Add model 2023-08-29-mpnet_embedding_burmese_awesome_setfit_model_98_en * Add model 2023-08-29-mpnet_embedding_all_mpnet_base_questions_clustering_english_en * Add model 2023-08-29-mpnet_embedding_shona_mpnet_base_snli_mnli_en * Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetforsequenceclassification_by_hf_internal_testing_en * Add model 2023-08-29-mpnet_embedding_setfit_ethos_multilabel_example_by_neilthematic_en * Add model 2023-08-29-mpnet_embedding_paraphrase_mpnet_base_v2_by_sentence_transformers_en --------- Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com> --------- Co-authored-by: jsl-models <74001263+jsl-models@users.noreply.github.com> Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com> Co-authored-by: maziyarpanahi <maziyar.panahi@iscpif.fr>
- Loading branch information
1 parent
770d5c0
commit 543faaf
Showing
31 changed files
with
2,728 additions
and
0 deletions.
There are no files selected for viewing
88 changes: 88 additions & 0 deletions
88
...27/2023-08-29-mpnet_embedding_all_mpnet_base_questions_clustering_english_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
--- | ||
layout: model | ||
title: English mpnet_embedding_all_mpnet_base_questions_clustering_english TFMPNetModel from aiknowyou | ||
author: John Snow Labs | ||
name: mpnet_embedding_all_mpnet_base_questions_clustering_english | ||
date: 2023-08-29 | ||
tags: [mpnet, en, open_source, tensorflow] | ||
task: Embeddings | ||
language: en | ||
edition: Spark NLP 5.1.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: MPNetEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained mpnet model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpnet_embedding_all_mpnet_base_questions_clustering_english` is a English model originally trained by aiknowyou. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_questions_clustering_english_en_5.1.0_3.0_1693327280583.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_questions_clustering_english_en_5.1.0_3.0_1693327280583.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
document_assembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("documents") | ||
|
||
instruction = MPNetEmbeddings \ | ||
.pretrained("mpnet_embedding_all_mpnet_base_questions_clustering_english", "en")\ | ||
.setInputCols(["documents"]) \ | ||
.setOutputCol("mpnet_embeddings") | ||
|
||
pipeline = Pipeline(stages=[ | ||
document_assembler, | ||
instruction, | ||
]) | ||
|
||
pipelineModel = pipeline.fit(data) | ||
|
||
pipelineDF = pipelineModel.transform(data) | ||
``` | ||
```scala | ||
|
||
val document_assembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("documents") | ||
|
||
val instruction = MPNetEmbeddings | ||
.pretrained("mpnet_embedding_all_mpnet_base_questions_clustering_english", "en") | ||
.setInputCols(Array("documents")) | ||
.setOutputCol("mpnet_embeddings") | ||
|
||
val pipeline = new Pipeline().setStages(Array(document_assembler, instruction)) | ||
|
||
val pipelineModel = pipeline.fit(data) | ||
|
||
val pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|mpnet_embedding_all_mpnet_base_questions_clustering_english| | ||
|Compatibility:|Spark NLP 5.1.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[documents]| | ||
|Output Labels:|[mpnet_embeddings]| | ||
|Language:|en| | ||
|Size:|409.8 MB| |
88 changes: 88 additions & 0 deletions
88
...sts/ahmedlone127/2023-08-29-mpnet_embedding_all_mpnet_base_v2_by_diptanuc_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
--- | ||
layout: model | ||
title: English mpnet_embedding_all_mpnet_base_v2_by_diptanuc TFMPNetModel from diptanuc | ||
author: John Snow Labs | ||
name: mpnet_embedding_all_mpnet_base_v2_by_diptanuc | ||
date: 2023-08-29 | ||
tags: [mpnet, en, open_source, tensorflow] | ||
task: Embeddings | ||
language: en | ||
edition: Spark NLP 5.1.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: MPNetEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained mpnet model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpnet_embedding_all_mpnet_base_v2_by_diptanuc` is a English model originally trained by diptanuc. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_v2_by_diptanuc_en_5.1.0_3.0_1693326522411.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_v2_by_diptanuc_en_5.1.0_3.0_1693326522411.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
document_assembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("documents") | ||
|
||
instruction = MPNetEmbeddings \ | ||
.pretrained("mpnet_embedding_all_mpnet_base_v2_by_diptanuc", "en")\ | ||
.setInputCols(["documents"]) \ | ||
.setOutputCol("mpnet_embeddings") | ||
|
||
pipeline = Pipeline(stages=[ | ||
document_assembler, | ||
instruction, | ||
]) | ||
|
||
pipelineModel = pipeline.fit(data) | ||
|
||
pipelineDF = pipelineModel.transform(data) | ||
``` | ||
```scala | ||
|
||
val document_assembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("documents") | ||
|
||
val instruction = MPNetEmbeddings | ||
.pretrained("mpnet_embedding_all_mpnet_base_v2_by_diptanuc", "en") | ||
.setInputCols(Array("documents")) | ||
.setOutputCol("mpnet_embeddings") | ||
|
||
val pipeline = new Pipeline().setStages(Array(document_assembler, instruction)) | ||
|
||
val pipelineModel = pipeline.fit(data) | ||
|
||
val pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|mpnet_embedding_all_mpnet_base_v2_by_diptanuc| | ||
|Compatibility:|Spark NLP 5.1.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[documents]| | ||
|Output Labels:|[mpnet_embeddings]| | ||
|Language:|en| | ||
|Size:|409.6 MB| |
88 changes: 88 additions & 0 deletions
88
...osts/ahmedlone127/2023-08-29-mpnet_embedding_all_mpnet_base_v2_by_obrizum_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
--- | ||
layout: model | ||
title: English mpnet_embedding_all_mpnet_base_v2_by_obrizum TFMPNetModel from obrizum | ||
author: John Snow Labs | ||
name: mpnet_embedding_all_mpnet_base_v2_by_obrizum | ||
date: 2023-08-29 | ||
tags: [mpnet, en, open_source, tensorflow] | ||
task: Embeddings | ||
language: en | ||
edition: Spark NLP 5.1.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: MPNetEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained mpnet model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpnet_embedding_all_mpnet_base_v2_by_obrizum` is a English model originally trained by obrizum. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_v2_by_obrizum_en_5.1.0_3.0_1693327114140.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_v2_by_obrizum_en_5.1.0_3.0_1693327114140.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
document_assembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("documents") | ||
|
||
instruction = MPNetEmbeddings \ | ||
.pretrained("mpnet_embedding_all_mpnet_base_v2_by_obrizum", "en")\ | ||
.setInputCols(["documents"]) \ | ||
.setOutputCol("mpnet_embeddings") | ||
|
||
pipeline = Pipeline(stages=[ | ||
document_assembler, | ||
instruction, | ||
]) | ||
|
||
pipelineModel = pipeline.fit(data) | ||
|
||
pipelineDF = pipelineModel.transform(data) | ||
``` | ||
```scala | ||
|
||
val document_assembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("documents") | ||
|
||
val instruction = MPNetEmbeddings | ||
.pretrained("mpnet_embedding_all_mpnet_base_v2_by_obrizum", "en") | ||
.setInputCols(Array("documents")) | ||
.setOutputCol("mpnet_embeddings") | ||
|
||
val pipeline = new Pipeline().setStages(Array(document_assembler, instruction)) | ||
|
||
val pipelineModel = pipeline.fit(data) | ||
|
||
val pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|mpnet_embedding_all_mpnet_base_v2_by_obrizum| | ||
|Compatibility:|Spark NLP 5.1.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[documents]| | ||
|Output Labels:|[mpnet_embeddings]| | ||
|Language:|en| | ||
|Size:|409.6 MB| |
88 changes: 88 additions & 0 deletions
88
...127/2023-08-29-mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
--- | ||
layout: model | ||
title: English mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers TFMPNetModel from sentence-transformers | ||
author: John Snow Labs | ||
name: mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers | ||
date: 2023-08-29 | ||
tags: [mpnet, en, open_source, tensorflow] | ||
task: Embeddings | ||
language: en | ||
edition: Spark NLP 5.1.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: MPNetEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained mpnet model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers` is a English model originally trained by sentence-transformers. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers_en_5.1.0_3.0_1693326097073.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers_en_5.1.0_3.0_1693326097073.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
|
||
document_assembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("documents") | ||
|
||
instruction = MPNetEmbeddings \ | ||
.pretrained("mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers", "en")\ | ||
.setInputCols(["documents"]) \ | ||
.setOutputCol("mpnet_embeddings") | ||
|
||
pipeline = Pipeline(stages=[ | ||
document_assembler, | ||
instruction, | ||
]) | ||
|
||
pipelineModel = pipeline.fit(data) | ||
|
||
pipelineDF = pipelineModel.transform(data) | ||
``` | ||
```scala | ||
|
||
val document_assembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("documents") | ||
|
||
val instruction = MPNetEmbeddings | ||
.pretrained("mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers", "en") | ||
.setInputCols(Array("documents")) | ||
.setOutputCol("mpnet_embeddings") | ||
|
||
val pipeline = new Pipeline().setStages(Array(document_assembler, instruction)) | ||
|
||
val pipelineModel = pipeline.fit(data) | ||
|
||
val pipelineDF = pipelineModel.transform(data) | ||
|
||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers| | ||
|Compatibility:|Spark NLP 5.1.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[documents]| | ||
|Output Labels:|[mpnet_embeddings]| | ||
|Language:|en| | ||
|Size:|409.6 MB| |
Oops, something went wrong.