Skip to content

Commit

Permalink
Models hub (#13943)
Browse files Browse the repository at this point in the history
* 2023-08-29-mpnet_embedding_tiny_random_mpnet_by_hf_internal_testing_en (#13949)

* Add model 2023-08-29-mpnet_embedding_tiny_random_mpnet_by_hf_internal_testing_en

* Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetformaskedlm_by_hf_tiny_model_private_en

* Add model 2023-08-29-mpnet_embedding_burmese_awesome_setfit_model_en

* Add model 2023-08-29-mpnet_embedding_github_issues_mpnet_southern_sotho_e10_en

* Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetforquestionanswering_by_hf_tiny_model_private_en

* Add model 2023-08-29-mpnet_embedding_multi_qa_mpnet_base_cos_v1_by_navteca_en

* Add model 2023-08-29-mpnet_embedding_github_issues_preprocessed_mpnet_southern_sotho_e10_en

* Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetfortokenclassification_by_hf_tiny_model_private_en

* Add model 2023-08-29-mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers_en

* Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetforsequenceclassification_by_hf_tiny_model_private_en

* Add model 2023-08-29-mpnet_embedding_multi_qa_mpnet_base_cos_v1_by_sentence_transformers_en

* Add model 2023-08-29-mpnet_embedding_setfit_alpaca_spanish_unprocessable_sample_detection_es

* Add model 2023-08-29-mpnet_embedding_setfit_model_by_rajistics_en

* Add model 2023-08-29-mpnet_embedding_multi_qa_mpnet_base_dot_v1_by_sentence_transformers_en

* Add model 2023-08-29-mpnet_embedding_all_mpnet_base_v2_by_diptanuc_en

* Add model 2023-08-29-mpnet_embedding_setfit_ethos_multilabel_example_by_lewtun_en

* Add model 2023-08-29-mpnet_embedding_nli_mpnet_base_v2_by_sentence_transformers_en

* Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetforquestionanswering_by_hf_internal_testing_en

* Add model 2023-08-29-mpnet_embedding_setfit_model_by_pradipta11_en

* Add model 2023-08-29-mpnet_embedding_multi_qa_mpnet_base_dot_v1_by_model_embeddings_en

* Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetformaskedlm_by_hf_internal_testing_en

* Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetfortokenclassification_by_hf_internal_testing_en

* Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetmodel_by_hf_internal_testing_en

* Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetmodel_by_hf_tiny_model_private_en

* Add model 2023-08-29-mpnet_embedding_all_mpnet_base_v2_by_obrizum_en

* Add model 2023-08-29-mpnet_embedding_burmese_awesome_setfit_model_98_en

* Add model 2023-08-29-mpnet_embedding_all_mpnet_base_questions_clustering_english_en

* Add model 2023-08-29-mpnet_embedding_shona_mpnet_base_snli_mnli_en

* Add model 2023-08-29-mpnet_embedding_tiny_random_mpnetforsequenceclassification_by_hf_internal_testing_en

* Add model 2023-08-29-mpnet_embedding_setfit_ethos_multilabel_example_by_neilthematic_en

* Add model 2023-08-29-mpnet_embedding_paraphrase_mpnet_base_v2_by_sentence_transformers_en

---------

Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com>

---------

Co-authored-by: jsl-models <74001263+jsl-models@users.noreply.github.com>
Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com>
Co-authored-by: maziyarpanahi <maziyar.panahi@iscpif.fr>
  • Loading branch information
3 people authored Sep 6, 2023
1 parent 770d5c0 commit 543faaf
Show file tree
Hide file tree
Showing 31 changed files with 2,728 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
---
layout: model
title: English mpnet_embedding_all_mpnet_base_questions_clustering_english TFMPNetModel from aiknowyou
author: John Snow Labs
name: mpnet_embedding_all_mpnet_base_questions_clustering_english
date: 2023-08-29
tags: [mpnet, en, open_source, tensorflow]
task: Embeddings
language: en
edition: Spark NLP 5.1.0
spark_version: 3.0
supported: true
engine: tensorflow
annotator: MPNetEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained mpnet model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpnet_embedding_all_mpnet_base_questions_clustering_english` is a English model originally trained by aiknowyou.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_questions_clustering_english_en_5.1.0_3.0_1693327280583.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_questions_clustering_english_en_5.1.0_3.0_1693327280583.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")

instruction = MPNetEmbeddings \
.pretrained("mpnet_embedding_all_mpnet_base_questions_clustering_english", "en")\
.setInputCols(["documents"]) \
.setOutputCol("mpnet_embeddings")

pipeline = Pipeline(stages=[
document_assembler,
instruction,
])

pipelineModel = pipeline.fit(data)

pipelineDF = pipelineModel.transform(data)
```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("documents")

val instruction = MPNetEmbeddings
.pretrained("mpnet_embedding_all_mpnet_base_questions_clustering_english", "en")
.setInputCols(Array("documents"))
.setOutputCol("mpnet_embeddings")

val pipeline = new Pipeline().setStages(Array(document_assembler, instruction))

val pipelineModel = pipeline.fit(data)

val pipelineDF = pipelineModel.transform(data)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|mpnet_embedding_all_mpnet_base_questions_clustering_english|
|Compatibility:|Spark NLP 5.1.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[mpnet_embeddings]|
|Language:|en|
|Size:|409.8 MB|
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
---
layout: model
title: English mpnet_embedding_all_mpnet_base_v2_by_diptanuc TFMPNetModel from diptanuc
author: John Snow Labs
name: mpnet_embedding_all_mpnet_base_v2_by_diptanuc
date: 2023-08-29
tags: [mpnet, en, open_source, tensorflow]
task: Embeddings
language: en
edition: Spark NLP 5.1.0
spark_version: 3.0
supported: true
engine: tensorflow
annotator: MPNetEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained mpnet model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpnet_embedding_all_mpnet_base_v2_by_diptanuc` is a English model originally trained by diptanuc.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_v2_by_diptanuc_en_5.1.0_3.0_1693326522411.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_v2_by_diptanuc_en_5.1.0_3.0_1693326522411.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")

instruction = MPNetEmbeddings \
.pretrained("mpnet_embedding_all_mpnet_base_v2_by_diptanuc", "en")\
.setInputCols(["documents"]) \
.setOutputCol("mpnet_embeddings")

pipeline = Pipeline(stages=[
document_assembler,
instruction,
])

pipelineModel = pipeline.fit(data)

pipelineDF = pipelineModel.transform(data)
```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("documents")

val instruction = MPNetEmbeddings
.pretrained("mpnet_embedding_all_mpnet_base_v2_by_diptanuc", "en")
.setInputCols(Array("documents"))
.setOutputCol("mpnet_embeddings")

val pipeline = new Pipeline().setStages(Array(document_assembler, instruction))

val pipelineModel = pipeline.fit(data)

val pipelineDF = pipelineModel.transform(data)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|mpnet_embedding_all_mpnet_base_v2_by_diptanuc|
|Compatibility:|Spark NLP 5.1.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[mpnet_embeddings]|
|Language:|en|
|Size:|409.6 MB|
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
---
layout: model
title: English mpnet_embedding_all_mpnet_base_v2_by_obrizum TFMPNetModel from obrizum
author: John Snow Labs
name: mpnet_embedding_all_mpnet_base_v2_by_obrizum
date: 2023-08-29
tags: [mpnet, en, open_source, tensorflow]
task: Embeddings
language: en
edition: Spark NLP 5.1.0
spark_version: 3.0
supported: true
engine: tensorflow
annotator: MPNetEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained mpnet model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpnet_embedding_all_mpnet_base_v2_by_obrizum` is a English model originally trained by obrizum.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_v2_by_obrizum_en_5.1.0_3.0_1693327114140.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_v2_by_obrizum_en_5.1.0_3.0_1693327114140.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")

instruction = MPNetEmbeddings \
.pretrained("mpnet_embedding_all_mpnet_base_v2_by_obrizum", "en")\
.setInputCols(["documents"]) \
.setOutputCol("mpnet_embeddings")

pipeline = Pipeline(stages=[
document_assembler,
instruction,
])

pipelineModel = pipeline.fit(data)

pipelineDF = pipelineModel.transform(data)
```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("documents")

val instruction = MPNetEmbeddings
.pretrained("mpnet_embedding_all_mpnet_base_v2_by_obrizum", "en")
.setInputCols(Array("documents"))
.setOutputCol("mpnet_embeddings")

val pipeline = new Pipeline().setStages(Array(document_assembler, instruction))

val pipelineModel = pipeline.fit(data)

val pipelineDF = pipelineModel.transform(data)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|mpnet_embedding_all_mpnet_base_v2_by_obrizum|
|Compatibility:|Spark NLP 5.1.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[mpnet_embeddings]|
|Language:|en|
|Size:|409.6 MB|
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
---
layout: model
title: English mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers TFMPNetModel from sentence-transformers
author: John Snow Labs
name: mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers
date: 2023-08-29
tags: [mpnet, en, open_source, tensorflow]
task: Embeddings
language: en
edition: Spark NLP 5.1.0
spark_version: 3.0
supported: true
engine: tensorflow
annotator: MPNetEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained mpnet model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers` is a English model originally trained by sentence-transformers.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers_en_5.1.0_3.0_1693326097073.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers_en_5.1.0_3.0_1693326097073.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")

instruction = MPNetEmbeddings \
.pretrained("mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers", "en")\
.setInputCols(["documents"]) \
.setOutputCol("mpnet_embeddings")

pipeline = Pipeline(stages=[
document_assembler,
instruction,
])

pipelineModel = pipeline.fit(data)

pipelineDF = pipelineModel.transform(data)
```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("documents")

val instruction = MPNetEmbeddings
.pretrained("mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers", "en")
.setInputCols(Array("documents"))
.setOutputCol("mpnet_embeddings")

val pipeline = new Pipeline().setStages(Array(document_assembler, instruction))

val pipelineModel = pipeline.fit(data)

val pipelineDF = pipelineModel.transform(data)

```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|mpnet_embedding_all_mpnet_base_v2_by_sentence_transformers|
|Compatibility:|Spark NLP 5.1.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[mpnet_embeddings]|
|Language:|en|
|Size:|409.6 MB|
Loading

0 comments on commit 543faaf

Please sign in to comment.