Skip to content

Commit

Permalink
2023-11-14-bert_qa_base_parsbert_uncased_finetuned_squad_fa (#14068)
Browse files Browse the repository at this point in the history
* Add model 2023-11-14-bert_qa_case_base_en

* Add model 2023-11-14-bert_qa_bert_multi_cased_finetuned_chaii_en

* Add model 2023-11-14-bert_qa_fine_tuned_tweetqa_aip_en

* Add model 2023-11-14-bert_qa_bert_uncased_l_10_h_512_a_8_cord19_200616_squad2_en

* Add model 2023-11-14-bert_qa_bert_multi_cased_finedtuned_xquad_tydiqa_goldp_xx

* Add model 2023-11-14-bert_qa_bert_uncased_l_4_h_512_a_8_cord19_200616_squad2_en

* Add model 2023-11-14-bert_qa_hkhkhkhk_finetuned_squad_en

* Add model 2023-11-14-bert_qa_bert_large_uncased_whole_word_masking_finetuned_squadv2_en

* Add model 2023-11-14-bert_qa_cgt_roberta_wwm_ext_large_zh

* Add model 2023-11-14-bert_qa_bert_multi_cased_finetuned_xquadv1_finetuned_squad_colab_en

* Add model 2023-11-14-bert_qa_hungarian_fine_tuned_hungarian_squadv2_hu

* Add model 2023-11-14-bert_qa_chemical_bert_uncased_squad2_en

* Add model 2023-11-14-bert_qa_bert_qasper_en

* Add model 2023-11-14-bert_qa_huawei_noahtiny_general_6l_768_hotpot_en

* Add model 2023-11-14-bert_qa_bertserini_bert_large_squad_en

* Add model 2023-11-14-bert_qa_bert_mini_5_finetuned_squadv2_en

* Add model 2023-11-14-bert_qa_bert_medium_squad2_distilled_en

* Add model 2023-11-14-bert_qa_bert_medium_finetuned_squad_en

* Add model 2023-11-14-bert_qa_bert_set_date_1_lr_2e_5_bosnian_32_ep_4_en

* Add model 2023-11-14-bert_qa_bert_small_finetuned_squadv2_en

* Add model 2023-11-14-bert_qa_komrc_train_ko

* Add model 2023-11-14-bert_qa_chinese_pert_large_open_domain_mrc_zh

* Add model 2023-11-14-bert_qa_bert_tiny_finetuned_squadv2_en

* Add model 2023-11-14-bert_qa_bert_multi_cased_finedtuned_xquad_chaii_en

* Add model 2023-11-14-bert_qa_biobert_squad2_cased_en

* Add model 2023-11-14-bert_qa_bert_uncased_l_10_h_512_a_8_cord19_200616_squad2_covid_qna_en

* Add model 2023-11-14-bert_qa_large_uncased_finetuned_infovqa_en

* Add model 2023-11-14-bert_qa_biobert_bioasq_en

* Add model 2023-11-14-bert_qa_bert_multi_uncased_finetuned_chaii_en

* Add model 2023-11-14-bert_qa_chinese_pretrain_mrc_roberta_wwm_ext_large_zh

* Add model 2023-11-14-bert_qa_bert_uncased_l_2_h_512_a_8_cord19_200616_squad2_en

* Add model 2023-11-14-bert_qa_bert_uncased_l_10_h_512_a_8_squad2_en

* Add model 2023-11-14-bert_qa_biobert_v1.1_pubmed_squad_v2_en

* Add model 2023-11-14-bert_qa_bert_uncased_l_4_h_512_a_8_cord19_200616_squad2_covid_qna_en

* Add model 2023-11-14-bert_qa_chinesebert_zh

* Add model 2023-11-14-bert_qa_bert_tiny_2_finetuned_squadv2_en

* Add model 2023-11-14-bert_qa_bert_uncased_l_4_h_768_a_12_squad2_en

* Add model 2023-11-14-bert_qa_bsnmldb_finetuned_squad_en

* Add model 2023-11-14-bert_qa_bert_tiny_5_finetuned_squadv2_en

* Add model 2023-11-14-bert_qa_biobert_v1.1_biomedicalquestionanswering_en

* Add model 2023-11-14-bert_qa_bert_uncased_l_4_h_768_a_12_squad2_covid_qna_en

* Add model 2023-11-14-bert_qa_large_uncased_finetuned_vietnamese_infovqa_en

* Add model 2023-11-14-bert_qa_chinese_question_answering_zh

* Add model 2023-11-14-bert_qa_bert_turkish_question_answering_tr

* Add model 2023-11-14-bert_qa_bert_uncased_l_4_h_256_a_4_squad2_covid_qna_en

* Add model 2023-11-14-bert_qa_lewtun_finetuned_squad_en

* Add model 2023-11-14-bert_qa_large_uncased_finetuned_squadv1_en

* Add model 2023-11-14-bert_qa_bert_uncased_l_4_h_512_a_8_squad2_en

* Add model 2023-11-14-bert_qa_cuad_pol_good_en

* Add model 2023-11-14-bert_qa_bertlargeabsa_en

* Add model 2023-11-14-bert_qa_deepset_bert_base_uncased_squad2_en

* Add model 2023-11-14-bert_qa_bert_uncased_l_4_h_768_a_12_cord19_200616_squad2_covid_qna_en

* Add model 2023-11-14-bert_qa_bert_uncased_l_6_h_128_a_2_squad2_en

* Add model 2023-11-14-bert_qa_deepset_minilm_uncased_squad2_orkg_how_5e_05_en

* Add model 2023-11-14-bert_qa_bertserini_base_cmrc_en

* Add model 2023-11-14-bert_qa_cuad_pol_bad_en

* Add model 2023-11-14-bert_qa_bertfast_02_en

* Add model 2023-11-14-bert_qa_danish_bert_botxo_qa_squad_da

* Add model 2023-11-14-bert_qa_linkbert_large_finetuned_squad_en

* Add model 2023-11-14-bert_qa_biobert_base_cased_v1.1_squad_en

* Add model 2023-11-14-bert_qa_bertserini_bert_base_squad_en

* Add model 2023-11-14-bert_qa_m_xx

* Add model 2023-11-14-bert_qa_darshana1406_base_multilingual_cased_finetuned_squad_xx

* Add model 2023-11-14-bert_qa_demo_en

* Add model 2023-11-14-bert_qa_biobert_base_cased_v1.1_squad_finetuned_biobert_en

* Add model 2023-11-14-bert_qa_mbert_all_tahitian_sqen_sq20_1_en

* Add model 2023-11-14-bert_qa_beto_base_spanish_squades2_es

* Add model 2023-11-14-bert_qa_dbg_finetuned_squad_en

* Add model 2023-11-14-bert_qa_biobert_v1.1_pubmed_finetuned_squad_en

* Add model 2023-11-14-bert_qa_biobert_base_cased_v1.1_squad_finetuned_covdrobert_en

* Add model 2023-11-14-bert_qa_macsquad_en

* Add model 2023-11-14-bert_qa_distilbert_base_uncased_finetuned_custom_en

* Add model 2023-11-14-bert_qa_bioformer_cased_v1.0_squad1_en

* Add model 2023-11-14-bert_qa_deep_pavlov_full_ru

* Add model 2023-11-14-bert_qa_mbert_finetuned_mlqa_english_hindi_dev_xx

* Add model 2023-11-14-bert_qa_financial_v2_en

* Add model 2023-11-14-bert_qa_deepset_minilm_uncased_squad2_orkg_how_1e_4_en

* Add model 2023-11-14-bert_qa_mbert_finetuned_mlqa_vietnamese_hindi_dev_xx

* Add model 2023-11-14-bert_qa_biobert_large_cased_v1.1_squad_en

* Add model 2023-11-14-bert_qa_deepset_minilm_uncased_squad2_orkg_norwegian_label_5e_05_en

* Add model 2023-11-14-bert_qa_deepset_minilm_uncased_squad2_orkg_what_1e_4_en

* Add model 2023-11-14-bert_qa_mkkc58_finetuned_squad_en

* Add model 2023-11-14-bert_qa_braquad_bert_qna_en

* Add model 2023-11-14-bert_qa_biomedical_slot_filling_reader_large_en

* Add model 2023-11-14-bert_qa_finetune_bert_base_v1_en

* Add model 2023-11-14-bert_qa_finetune_scibert_v2_en

* Add model 2023-11-14-bert_qa_faquad_base_portuguese_cased_pt

* Add model 2023-11-14-bert_qa_modelontquad_tr

* Add model 2023-11-14-bert_qa_finetuned_custom_2_en

* Add model 2023-11-14-bert_qa_chinese_pert_large_mrc_zh

* Add model 2023-11-14-bert_qa_monakth_base_cased_finetuned_squad_en

* Add model 2023-11-14-bert_qa_causal_qa_en

* Add model 2023-11-14-bert_qa_fewrel_zero_shot_en

* Add model 2023-11-14-bert_qa_fpdm_hier_bert_ft_newsqa_en

* Add model 2023-11-14-bert_qa_cyrusmv_finetuned_squad_en

* Add model 2023-11-14-bert_qa_mqa_baseline_en

* Add model 2023-11-14-bert_qa_deepset_minilm_uncased_squad2_orkg_what_5e_05_en

* Add model 2023-11-14-bert_qa_fine_tuned_squad_aip_en

* Add model 2023-11-14-bert_qa_hebert_finetuned_hebrew_squad_he

* Add model 2023-11-14-bert_qa_deepset_minilm_uncased_squad2_orkg_which_5e_05_en

* Add model 2023-11-14-bert_qa_chinese_pretrain_mrc_macbert_large_zh

* Add model 2023-11-14-bert_qa_multilingual_bert_base_cased_english_en

* Add model 2023-11-14-bert_qa_covidbert_squad_en

* Add model 2023-11-14-bert_qa_finetuned_uia_en

* Add model 2023-11-14-bert_qa_ixambert_finetuned_squad_en

* Add model 2023-11-14-bert_qa_dl4nlp_group11_xtremedistil_l6_h256_uncased_squad_en

* Add model 2023-11-14-bert_qa_distill_bert_base_spanish_wwm_cased_finetuned_spa_squad2_spanish_mrm8488_es

* Add model 2023-11-14-bert_qa_firmanindolanguagemodel_id

* Add model 2023-11-14-bert_qa_jatinshah_bert_finetuned_squad_en

* Add model 2023-11-14-bert_qa_dylan1999_finetuned_squad_en

* Add model 2023-11-14-bert_qa_fpdm_bert_ft_nepal_bhasa_newsqa_en

* Add model 2023-11-14-bert_qa_deberta_v3_base_en

* Add model 2023-11-14-bert_qa_muril_large_cased_hita_qa_hi

* Add model 2023-11-14-bert_qa_kd_squad1.1_en

* Add model 2023-11-14-bert_qa_fpdm_triplet_bert_ft_newsqa_en

* Add model 2023-11-14-bert_qa_csarron_bert_base_uncased_squad_v1_en

* Add model 2023-11-14-bert_qa_finetuned_custom_en

* Add model 2023-11-14-bert_qa_nausheen_finetuned_squad_accelera_en

* Add model 2023-11-14-bert_qa_debug_squad_en

* Add model 2023-11-14-bert_qa_hendrixcosta_en

* Add model 2023-11-14-bert_qa_kflash_finetuned_squad_en

* Add model 2023-11-14-bert_qa_neuralmind_base_portuguese_squad_pt

* Add model 2023-11-14-bert_qa_deep_pavlov_full_2_ru

* Add model 2023-11-14-bert_qa_huggingface_course_bert_finetuned_squad_en

* Add model 2023-11-14-bert_qa_korean_finetuned_klue_v2_ko

* Add model 2023-11-14-bert_qa_kflash_finetuned_squad_accelera_en

* Add model 2023-11-14-bert_qa_fpdm_hier_bert_ft_nepal_bhasa_newsqa_en

* Add model 2023-11-14-bert_qa_deepset_minilm_uncased_squad2_orkg_which_1e_4_en

* Add model 2023-11-14-bert_qa_huggingface_course_bert_finetuned_squad_accelerate_en

* Add model 2023-11-14-bert_qa_ofirzaf_bert_large_uncased_squad_en

* Add model 2023-11-14-bert_qa_hf_internal_testing_tiny_random_forquestionanswering_ja

* Add model 2023-11-14-bert_qa_deepset_minilm_uncased_squad2_orkg_norwegian_label_1e_4_en

* Add model 2023-11-14-bert_qa_finetuned_squad_transformerfrozen_testtoken_en

* Add model 2023-11-14-bert_qa_fpdm_triplet_bert_ft_nepal_bhasa_newsqa_en

* Add model 2023-11-14-bert_qa_dry_finetuned_squad_en

* Add model 2023-11-15-bert_qa_indo_finetune_tydi_transfer_indo_in

* Add model 2023-11-15-bert_qa_dylan1999_finetuned_squad_accelerate_en

* Add model 2023-11-14-bert_qa_kobert_finetuned_klue_v2_ko

* Add model 2023-11-15-bert_qa_large_japanese_wikipedia_ud_head_ja

* Add model 2023-11-15-bert_qa_howey_bert_large_uncased_squad_en

* Add model 2023-11-15-bert_qa_mbert_finetuned_mlqa_arabic_hindi_dev_xx

* Add model 2023-11-15-bert_qa_pert_zh

* Add model 2023-11-15-bert_qa_peterhsu_bert_finetuned_squad_en

* Add model 2023-11-15-bert_qa_fabianwillner_base_uncased_finetuned_squad_en

* Add model 2023-11-15-bert_qa_mbert_finetuned_mlqa_chinese_hindi_dev_xx

* Add model 2023-11-15-bert_qa_mini_finetuned_squad_en

* Add model 2023-11-15-bert_qa_internetoftim_bert_large_uncased_squad_en

* Add model 2023-11-15-bert_qa_peterhsu_bert_finetuned_squad_accelerate_en

* Add model 2023-11-15-bert_qa_indo_base_uncased_finetuned_tydi_indo_in

* Add model 2023-11-15-bert_qa_hubert_fine_tuned_hungarian_squadv1_hu

* Add model 2023-11-15-bert_qa_monakth_base_uncased_finetuned_squad_en

* Add model 2023-11-15-bert_qa_finetune_bert_base_v3_en

* Add model 2023-11-15-bert_qa_jimypbr_bert_base_uncased_squad_en

* Add model 2023-11-15-bert_qa_finetune_bert_base_v2_en

* Add model 2023-11-15-bert_qa_pubmed_bert_squadv2_en

* Add model 2023-11-15-bert_qa_mrp_bert_finetuned_squad_en

* Add model 2023-11-15-bert_qa_finetuned_custom_1_en

* Add model 2023-11-15-bert_qa_kamilali_distilbert_base_uncased_finetuned_squad_en

* Add model 2023-11-15-bert_qa_qgrantq_finetuned_squad_en

* Add model 2023-11-15-bert_qa_large_squad_en

* Add model 2023-11-15-bert_qa_multilingual_bert_base_cased_spanish_es

* Add model 2023-11-15-bert_qa_fpdm_bert_ft_newsqa_en

* Add model 2023-11-15-bert_qa_kaporter_bert_base_uncased_finetuned_squad_en

* Add model 2023-11-15-bert_qa_question_answering_cased_squadv2_tr

* Add model 2023-11-15-bert_qa_linkbert_base_finetuned_squad_en

* Add model 2023-11-15-bert_qa_fpdm_pert_sent_0.01_squad2.0_en

* Add model 2023-11-15-bert_qa_kcbert_base_finetuned_squad_ko

* Add model 2023-11-15-bert_qa_question_answering_uncased_squadv2_tr

* Add model 2023-11-15-bert_qa_indo_base_indonesian_finetune_idk_mrc_id

* Add model 2023-11-15-bert_qa_keepitreal_finetuned_squad_en

* Add model 2023-11-15-bert_qa_burmese_model_en

* Add model 2023-11-15-bert_qa_loodos_bert_base_uncased_qa_fine_tuned_tr

* Add model 2023-11-15-bert_qa_quote_attribution_en

* Add model 2023-11-15-bert_qa_multilingual_bert_base_cased_vietnamese_vi

* Add model 2023-11-15-bert_qa_khanh_base_multilingual_cased_finetuned_squad_en

* Add model 2023-11-15-bert_qa_indo_finetuned_squad_id

* Add model 2023-11-15-bert_qa_ner_conll_base_uncased_en

* Add model 2023-11-15-bert_qa_irenelizihui_finetuned_squad_en

* Add model 2023-11-15-bert_qa_neuralmagic_bert_squad_12layer_0sparse_en

* Add model 2023-11-15-bert_qa_klue_bert_base_aihub_mrc_ko

* Add model 2023-11-15-bert_qa_mbert_finetuned_mlqa_dev_en

* Add model 2023-11-15-bert_qa_ixambert_finetuned_squad_basque_marcbrun_eu

* Add model 2023-11-15-bert_qa_mbert_finetuned_mlqa_english_chinese_hindi_dev_xx

* Add model 2023-11-15-bert_qa_salti_bert_base_multilingual_cased_finetuned_squad_xx

* Add model 2023-11-15-bert_qa_kobert_finetuned_squad_kor_v1_ko

* Add model 2023-11-15-bert_qa_korean_lm_finetuned_klue_v2_ko

* Add model 2023-11-15-bert_qa_mbert_finetuned_mlqa_spanish_hindi_dev_xx

* Add model 2023-11-15-bert_qa_nolog_scibert_v2_en

* Add model 2023-11-15-bert_qa_minilm_uncased_squad2_en

* Add model 2023-11-15-bert_qa_pars_question_answering_pquad_fa

* Add model 2023-11-15-bert_qa_modelbin_en

* Add model 2023-11-15-bert_qa_large_en

* Add model 2023-11-15-bert_qa_sber_full_tes_ru

* Add model 2023-11-15-bert_qa_multilingual_base_cased_chines_zh

* Add model 2023-11-15-bert_qa_mqa_cls_en

* Add model 2023-11-15-bert_qa_sbert_large_nlu_russian_finetuned_squad_en

* Add model 2023-11-15-bert_qa_ruselkomp_sbert_large_nlu_russian_finetuned_squad_full_ru

* Add model 2023-11-15-bert_qa_multi_uncased_trained_squadv2_en

* Add model 2023-11-15-bert_qa_large_uncased_spanish_sign_language_en

* Add model 2023-11-15-bert_qa_multilingual_bert_base_cased_german_de

* Add model 2023-11-15-bert_qa_scibert_nli_squad_en

* Add model 2023-11-15-bert_qa_logo_qna_model_tr

* Add model 2023-11-15-bert_qa_multilingual_bert_base_cased_arabic_ar

* Add model 2023-11-15-bert_qa_sangyongan30_finetuned_squad_en

* Add model 2023-11-15-bert_qa_sd2_en

* Add model 2023-11-15-bert_qa_sd2_small_en

* Add model 2023-11-15-bert_qa_mymild_finetuned_squad_en

* Add model 2023-11-15-bert_qa_muril_large_squad2_hi

* Add model 2023-11-15-bert_qa_mbert_bengali_tydiqa_qa_bn

* Add model 2023-11-15-bert_qa_set_date_1_lr_3e_5_bosnian_32_ep_3_en

* Add model 2023-11-15-bert_qa_sci_squadv2_en

* Add model 2023-11-15-bert_qa_mbert_finetuned_mlqa_german_hindi_dev_xx

* Add model 2023-11-15-bert_qa_set_date_2_lr_2e_5_bosnian_32_ep_4_en

* Add model 2023-11-15-bert_qa_mini_en

* Add model 2023-11-15-bert_qa_norwegian_need_tonga_tonga_islands_name_this_en

* Add model 2023-11-15-bert_qa_minilm_l12_h384_uncased_squad_en

* Add model 2023-11-15-bert_qa_news_pretrain_bert_ft_newsqa_en

* Add model 2023-11-15-bert_qa_neg_komrc_train_ko

* Add model 2023-11-15-bert_qa_scibert_scivocab_uncased_squad_v2_en

* Add model 2023-11-15-bert_qa_mod_7_squad_en

* Add model 2023-11-15-bert_qa_shed_e_finetuned_squad_en

* Add model 2023-11-15-bert_qa_news_pretrain_bert_ft_nepal_bhasa_newsqa_en

* Add model 2023-11-15-bert_qa_spanbert_base_cased_few_shot_k_1024_finetuned_squad_seed_4_en

* Add model 2023-11-15-bert_qa_pars_fa

* Add model 2023-11-15-bert_qa_output_files_en

* Add model 2023-11-15-bert_qa_paranoidandroid_finetuned_squad_en

* Add model 2023-11-15-bert_qa_small_finetuned_cuad_longer_en

* Add model 2023-11-15-bert_qa_spanbert_base_cased_few_shot_k_128_finetuned_squad_seed_0_en

* Add model 2023-11-15-bert_qa_modelf_01_en

* Add model 2023-11-15-bert_qa_parsbert_finetuned_persianqa_fa

* Add model 2023-11-15-bert_qa_petros89_finetuned_squad_en

* Add model 2023-11-15-bert_qa_scibert_scivocab_uncased_squad_en

* Add model 2023-11-15-bert_qa_spanbert_base_cased_few_shot_k_16_finetuned_squad_seed_0_en

* Add model 2023-11-15-bert_qa_span_finetuned_squadv2_en

* Add model 2023-11-15-bert_qa_qa_roberta_base_chinese_extractive_zh

* Add model 2023-11-15-bert_qa_set_date_3_lr_2e_5_bosnian_32_ep_3_en

* Add model 2023-11-15-bert_qa_pquad_fa

* Add model 2023-11-15-bert_qa_spanbert_base_cased_few_shot_k_16_finetuned_squad_seed_2_en

* Add model 2023-11-15-bert_qa_spanbert_base_cased_few_shot_k_1024_finetuned_squad_seed_10_en

* Add model 2023-11-15-bert_qa_sirah_finetuned_squad_en

* Add model 2023-11-15-bert_qa_spanbert_base_cased_few_shot_k_1024_finetuned_squad_seed_2_en

* Add model 2023-11-15-bert_qa_model_output_en

* Add model 2023-11-15-bert_qa_modelonwhol_tr

* Add model 2023-11-15-bert_qa_modelv2_en

* Add model 2023-11-15-bert_qa_spanbert_base_cased_few_shot_k_512_finetuned_squad_seed_0_en

* Add model 2023-11-15-bert_qa_qaconv_bert_large_uncased_whole_word_masking_squad2_en

* Add model 2023-11-15-bert_qa_question_answering_chinese_zh

* Add model 2023-11-15-bert_qa_monakth_base_multilingual_cased_finetuned_squad_xx

* Add model 2023-11-15-bert_qa_spanbert_base_cased_few_shot_k_512_finetuned_squad_seed_4_en

* Add model 2023-11-15-bert_qa_recipe_triplet_base_uncased_squadv2_epochs_3_en

---------

Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com>
  • Loading branch information
jsl-models and ahmedlone127 authored Nov 15, 2023
1 parent 1f5115e commit 5317ba7
Show file tree
Hide file tree
Showing 309 changed files with 31,197 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
---
layout: model
title: English BertForQuestionAnswering Base Cased model (from Khanh)
author: John Snow Labs
name: bert_qa_base_multilingual_cased_finetuned_viquad
date: 2023-11-14
tags: [en, open_source, bert, question_answering, onnx]
task: Question Answering
language: en
edition: Spark NLP 5.2.0
spark_version: 3.0
supported: true
engine: onnx
annotator: BertForQuestionAnswering
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained Question Answering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `bert-base-multilingual-cased-finetuned-viquad` is a English model originally trained by `Khanh`.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_qa_base_multilingual_cased_finetuned_viquad_en_5.2.0_3.0_1699993581067.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_qa_base_multilingual_cased_finetuned_viquad_en_5.2.0_3.0_1699993581067.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
documentAssembler = MultiDocumentAssembler() \
.setInputCols(["question", "context"]) \
.setOutputCols(["document_question", "document_context"])

spanClassifier = BertForQuestionAnswering.pretrained("bert_qa_base_multilingual_cased_finetuned_viquad","en") \
.setInputCols(["document_question", "document_context"]) \
.setOutputCol("answer")\
.setCaseSensitive(True)

pipeline = Pipeline(stages=[documentAssembler, spanClassifier])

data = spark.createDataFrame([["What is my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context")

result = pipeline.fit(data).transform(data)
```
```scala
val documentAssembler = new MultiDocumentAssembler()
.setInputCols(Array("question", "context"))
.setOutputCols(Array("document_question", "document_context"))

val spanClassifer = BertForQuestionAnswering.pretrained("bert_qa_base_multilingual_cased_finetuned_viquad","en")
.setInputCols(Array("document", "token"))
.setOutputCol("answer")
.setCaseSensitive(true)

val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))

val data = Seq("What is my name?", "My name is Clara and I live in Berkeley.").toDF("question", "context")

val result = pipeline.fit(data).transform(data)
```

{:.nlu-block}
```python
import nlu
nlu.load("en.answer_question.bert.cased_multilingual_base_finetuned").predict("""What is my name?|||"My name is Clara and I live in Berkeley.""")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_qa_base_multilingual_cased_finetuned_viquad|
|Compatibility:|Spark NLP 5.2.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[document_question, document_context]|
|Output Labels:|[answer]|
|Language:|en|
|Size:|665.0 MB|
|Case sensitive:|true|
|Max sentence length:|512|

## References

References

- https://huggingface.co/Khanh/bert-base-multilingual-cased-finetuned-viquad
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
---
layout: model
title: Multilingual BertForQuestionAnswering Base Cased model (from obokkkk)
author: John Snow Labs
name: bert_qa_base_multilingual_cased_finetuned
date: 2023-11-14
tags: [xx, open_source, bert, question_answering, onnx]
task: Question Answering
language: xx
edition: Spark NLP 5.2.0
spark_version: 3.0
supported: true
engine: onnx
annotator: BertForQuestionAnswering
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `bert-base-multilingual-cased-finetuned` is a Multilingual model originally trained by `obokkkk`.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_qa_base_multilingual_cased_finetuned_xx_5.2.0_3.0_1699993678387.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_qa_base_multilingual_cased_finetuned_xx_5.2.0_3.0_1699993678387.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
Document_Assembler = MultiDocumentAssembler()\
.setInputCols(["question", "context"])\
.setOutputCols(["document_question", "document_context"])

Question_Answering = BertForQuestionAnswering.pretrained("bert_qa_base_multilingual_cased_finetuned","xx")\
.setInputCols(["document_question", "document_context"])\
.setOutputCol("answer")\
.setCaseSensitive(True)

pipeline = Pipeline(stages=[Document_Assembler, Question_Answering])

data = spark.createDataFrame([["What's my name?","My name is Clara and I live in Berkeley."]]).toDF("question", "context")

result = pipeline.fit(data).transform(data)
```
```scala
val Document_Assembler = new MultiDocumentAssembler()
.setInputCols(Array("question", "context"))
.setOutputCols(Array("document_question", "document_context"))

val Question_Answering = BertForQuestionAnswering.pretrained("bert_qa_base_multilingual_cased_finetuned","xx")
.setInputCols(Array("document_question", "document_context"))
.setOutputCol("answer")
.setCaseSensitive(true)

val pipeline = new Pipeline().setStages(Array(Document_Assembler, Question_Answering))

val data = Seq("What's my name?","My name is Clara and I live in Berkeley.").toDS.toDF("question", "context")

val result = pipeline.fit(data).transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_qa_base_multilingual_cased_finetuned|
|Compatibility:|Spark NLP 5.2.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[document_question, document_context]|
|Output Labels:|[answer]|
|Language:|xx|
|Size:|665.0 MB|
|Case sensitive:|true|
|Max sentence length:|512|

## References

References

- https://huggingface.co/obokkkk/bert-base-multilingual-cased-finetuned
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
---
layout: model
title: Multilingual BertForQuestionAnswering Base Uncased model (from khoanvm)
author: John Snow Labs
name: bert_qa_base_multilingual_uncased_finetuned_squadv2
date: 2023-11-14
tags: [xx, open_source, bert, question_answering, onnx]
task: Question Answering
language: xx
edition: Spark NLP 5.2.0
spark_version: 3.0
supported: true
engine: onnx
annotator: BertForQuestionAnswering
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `bert-base-multilingual-uncased-finetuned-squadv2` is a Multilingual model originally trained by `khoanvm`.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_qa_base_multilingual_uncased_finetuned_squadv2_xx_5.2.0_3.0_1699993920867.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_qa_base_multilingual_uncased_finetuned_squadv2_xx_5.2.0_3.0_1699993920867.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
Document_Assembler = MultiDocumentAssembler()\
.setInputCols(["question", "context"])\
.setOutputCols(["document_question", "document_context"])

Question_Answering = BertForQuestionAnswering.pretrained("bert_qa_base_multilingual_uncased_finetuned_squadv2","xx")\
.setInputCols(["document_question", "document_context"])\
.setOutputCol("answer")\
.setCaseSensitive(True)

pipeline = Pipeline(stages=[Document_Assembler, Question_Answering])

data = spark.createDataFrame([["What's my name?","My name is Clara and I live in Berkeley."]]).toDF("question", "context")

result = pipeline.fit(data).transform(data)
```
```scala
val Document_Assembler = new MultiDocumentAssembler()
.setInputCols(Array("question", "context"))
.setOutputCols(Array("document_question", "document_context"))

val Question_Answering = BertForQuestionAnswering.pretrained("bert_qa_base_multilingual_uncased_finetuned_squadv2","xx")
.setInputCols(Array("document_question", "document_context"))
.setOutputCol("answer")
.setCaseSensitive(true)

val pipeline = new Pipeline().setStages(Array(Document_Assembler, Question_Answering))

val data = Seq("What's my name?","My name is Clara and I live in Berkeley.").toDS.toDF("question", "context")

val result = pipeline.fit(data).transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_qa_base_multilingual_uncased_finetuned_squadv2|
|Compatibility:|Spark NLP 5.2.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[document_question, document_context]|
|Output Labels:|[answer]|
|Language:|xx|
|Size:|625.5 MB|
|Case sensitive:|false|
|Max sentence length:|512|

## References

References

- https://huggingface.co/khoanvm/bert-base-multilingual-uncased-finetuned-squadv2
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
---
layout: model
title: Finnish BertForQuestionAnswering Base Cased model (from ilmariky)
author: John Snow Labs
name: bert_qa_base_nnish_cased_squad1
date: 2023-11-14
tags: [fi, open_source, bert, question_answering, onnx]
task: Question Answering
language: fi
edition: Spark NLP 5.2.0
spark_version: 3.0
supported: true
engine: onnx
annotator: BertForQuestionAnswering
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `bert-base-finnish-cased-squad1-fi` is a Finnish model originally trained by `ilmariky`.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_qa_base_nnish_cased_squad1_fi_5.2.0_3.0_1699993974738.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_qa_base_nnish_cased_squad1_fi_5.2.0_3.0_1699993974738.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
Document_Assembler = MultiDocumentAssembler()\
.setInputCols(["question", "context"])\
.setOutputCols(["document_question", "document_context"])

Question_Answering = BertForQuestionAnswering.pretrained("bert_qa_base_nnish_cased_squad1","fi")\
.setInputCols(["document_question", "document_context"])\
.setOutputCol("answer")\
.setCaseSensitive(True)

pipeline = Pipeline(stages=[Document_Assembler, Question_Answering])

data = spark.createDataFrame([["What's my name?","My name is Clara and I live in Berkeley."]]).toDF("question", "context")

result = pipeline.fit(data).transform(data)
```
```scala
val Document_Assembler = new MultiDocumentAssembler()
.setInputCols(Array("question", "context"))
.setOutputCols(Array("document_question", "document_context"))

val Question_Answering = BertForQuestionAnswering.pretrained("bert_qa_base_nnish_cased_squad1","fi")
.setInputCols(Array("document_question", "document_context"))
.setOutputCol("answer")
.setCaseSensitive(true)

val pipeline = new Pipeline().setStages(Array(Document_Assembler, Question_Answering))

val data = Seq("What's my name?","My name is Clara and I live in Berkeley.").toDS.toDF("question", "context")

val result = pipeline.fit(data).transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_qa_base_nnish_cased_squad1|
|Compatibility:|Spark NLP 5.2.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[document_question, document_context]|
|Output Labels:|[answer]|
|Language:|fi|
|Size:|464.7 MB|
|Case sensitive:|true|
|Max sentence length:|512|

## References

References

- https://huggingface.co/ilmariky/bert-base-finnish-cased-squad1-fi
- https://github.com/google-research-datasets/tydiqa
- https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
Loading

0 comments on commit 5317ba7

Please sign in to comment.