-
Notifications
You must be signed in to change notification settings - Fork 717
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
373 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,321 @@ | ||
# Copyright 2017-2024 John Snow Labs | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Contains classes for the CPMTransformer.""" | ||
|
||
from sparknlp.common import * | ||
|
||
|
||
class CPMTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine): | ||
"""MiniCPM: Unveiling the Potential of End-side Large Language Models | ||
MiniCPM is a series of edge-side large language models, with the base model, MiniCPM-2B, | ||
having 2.4B non-embedding parameters. It ranks closely with Mistral-7B on comprehensive | ||
benchmarks (with better performance in Chinese, mathematics, and coding abilities), surpassing | ||
models like Llama2-13B, MPT-30B, and Falcon-40B. On the MTBench benchmark, which is closest to | ||
user experience, MiniCPM-2B also outperforms many representative open-source models such as | ||
Llama2-70B-Chat, Vicuna-33B, Mistral-7B-Instruct-v0.1, and Zephyr-7B-alpha. | ||
After DPO, MiniCPM outperforms Llama2-70B-Chat, Vicuna-33B, Mistral-7B-Instruct-v0.1, | ||
Zephyr-7B-alpha, etc. on MTBench. | ||
MiniCPM-V, based on MiniCPM-2B, achieves the best overall performance among multimodel models | ||
of the same scale, surpassing existing multimodal large models built on Phi-2 and achieving | ||
performance comparable to or even better than 9.6B Qwen-VL-Chat on some tasks. | ||
MiniCPM can be deployed and infer on smartphones, and the speed of streaming output is | ||
relatively higher than the verbal speed of human. | ||
Pretrained models can be loaded with :meth:`.pretrained` of the companion | ||
object: | ||
>>> cpm = CPMTransformer.pretrained() \\ | ||
... .setInputCols(["document"]) \\ | ||
... .setOutputCol("generation") | ||
The default model is ``"llam2-7b"``, if no name is provided. For available | ||
pretrained models please see the `Models Hub | ||
<https://sparknlp.org/models?q=cpm>`__. | ||
====================== ====================== | ||
Input Annotation types Output Annotation type | ||
====================== ====================== | ||
``DOCUMENT`` ``DOCUMENT`` | ||
====================== ====================== | ||
Parameters | ||
---------- | ||
configProtoBytes | ||
ConfigProto from tensorflow, serialized into byte array. | ||
minOutputLength | ||
Minimum length of the sequence to be generated, by default 0 | ||
maxOutputLength | ||
Maximum length of output text, by default 20 | ||
doSample | ||
Whether or not to use sampling; use greedy decoding otherwise, by default False | ||
temperature | ||
The value used to module the next token probabilities, by default 1.0 | ||
topK | ||
The number of highest probability vocabulary tokens to keep for | ||
top-k-filtering, by default 50 | ||
topP | ||
Top cumulative probability for vocabulary tokens, by default 1.0 | ||
If set to float < 1, only the most probable tokens with probabilities | ||
that add up to ``topP`` or higher are kept for generation. | ||
repetitionPenalty | ||
The parameter for repetition penalty, 1.0 means no penalty. , by default | ||
1.0 | ||
noRepeatNgramSize | ||
If set to int > 0, all ngrams of that size can only occur once, by | ||
default 0 | ||
ignoreTokenIds | ||
A list of token ids which are ignored in the decoder's output, by | ||
default [] | ||
Notes | ||
----- | ||
This is a very computationally expensive module especially on larger | ||
sequence. The use of an accelerator such as GPU is recommended. | ||
References | ||
---------- | ||
- `MiniCPM: Unveiling the Potential of End-side Large Language Models | ||
<https://shengdinghu.notion.site/MiniCPM-Unveiling-the-Potential-of-End-side-Large-Language-Models-d4d3a8c426424654a4e80e42a711cb20>` | ||
- https://github.com/OpenBMB/MiniCPM | ||
Examples | ||
-------- | ||
>>> import sparknlp | ||
>>> from sparknlp.base import * | ||
>>> from sparknlp.annotator import * | ||
>>> from pyspark.ml import Pipeline | ||
>>> documentAssembler = DocumentAssembler() \\ | ||
... .setInputCol("text") \\ | ||
... .setOutputCol("documents") | ||
>>> cpm = CPMTransformer.pretrained("llama_2_7b_chat_hf_int4") \\ | ||
... .setInputCols(["documents"]) \\ | ||
... .setMaxOutputLength(50) \\ | ||
... .setOutputCol("generation") | ||
>>> pipeline = Pipeline().setStages([documentAssembler, cpm]) | ||
>>> data = spark.createDataFrame([["My name is Leonardo."]]).toDF("text") | ||
>>> result = pipeline.fit(data).transform(data) | ||
>>> result.select("summaries.generation").show(truncate=False) | ||
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ||
|result | | ||
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ||
|[My name is Leonardo. I am a student at the University of California, Los Angeles. I have a passion for writing and learning about different cultures. I enjoy playing basketball and watching movies]| | ||
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ||
""" | ||
|
||
name = "CPMTransformer" | ||
|
||
inputAnnotatorTypes = [AnnotatorType.DOCUMENT] | ||
|
||
outputAnnotatorType = AnnotatorType.DOCUMENT | ||
|
||
configProtoBytes = Param(Params._dummy(), "configProtoBytes", | ||
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", | ||
TypeConverters.toListInt) | ||
|
||
minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", | ||
typeConverter=TypeConverters.toBoolean) | ||
|
||
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", | ||
typeConverter=TypeConverters.toFloat) | ||
|
||
topK = Param(Params._dummy(), "topK", | ||
"The number of highest probability vocabulary tokens to keep for top-k-filtering", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
topP = Param(Params._dummy(), "topP", | ||
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation", | ||
typeConverter=TypeConverters.toFloat) | ||
|
||
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", | ||
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details", | ||
typeConverter=TypeConverters.toFloat) | ||
|
||
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", | ||
"If set to int > 0, all ngrams of that size can only occur once", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", | ||
"A list of token ids which are ignored in the decoder's output", | ||
typeConverter=TypeConverters.toListInt) | ||
|
||
def setIgnoreTokenIds(self, value): | ||
"""A list of token ids which are ignored in the decoder's output. | ||
Parameters | ||
---------- | ||
value : List[int] | ||
The words to be filtered out | ||
""" | ||
return self._set(ignoreTokenIds=value) | ||
|
||
def setConfigProtoBytes(self, b): | ||
"""Sets configProto from tensorflow, serialized into byte array. | ||
Parameters | ||
---------- | ||
b : List[int] | ||
ConfigProto from tensorflow, serialized into byte array | ||
""" | ||
return self._set(configProtoBytes=b) | ||
|
||
def setMinOutputLength(self, value): | ||
"""Sets minimum length of the sequence to be generated. | ||
Parameters | ||
---------- | ||
value : int | ||
Minimum length of the sequence to be generated | ||
""" | ||
return self._set(minOutputLength=value) | ||
|
||
def setMaxOutputLength(self, value): | ||
"""Sets maximum length of output text. | ||
Parameters | ||
---------- | ||
value : int | ||
Maximum length of output text | ||
""" | ||
return self._set(maxOutputLength=value) | ||
|
||
def setDoSample(self, value): | ||
"""Sets whether or not to use sampling, use greedy decoding otherwise. | ||
Parameters | ||
---------- | ||
value : bool | ||
Whether or not to use sampling; use greedy decoding otherwise | ||
""" | ||
return self._set(doSample=value) | ||
|
||
def setTemperature(self, value): | ||
"""Sets the value used to module the next token probabilities. | ||
Parameters | ||
---------- | ||
value : float | ||
The value used to module the next token probabilities | ||
""" | ||
return self._set(temperature=value) | ||
|
||
def setTopK(self, value): | ||
"""Sets the number of highest probability vocabulary tokens to keep for | ||
top-k-filtering. | ||
Parameters | ||
---------- | ||
value : int | ||
Number of highest probability vocabulary tokens to keep | ||
""" | ||
return self._set(topK=value) | ||
|
||
def setTopP(self, value): | ||
"""Sets the top cumulative probability for vocabulary tokens. | ||
If set to float < 1, only the most probable tokens with probabilities | ||
that add up to ``topP`` or higher are kept for generation. | ||
Parameters | ||
---------- | ||
value : float | ||
Cumulative probability for vocabulary tokens | ||
""" | ||
return self._set(topP=value) | ||
|
||
def setRepetitionPenalty(self, value): | ||
"""Sets the parameter for repetition penalty. 1.0 means no penalty. | ||
Parameters | ||
---------- | ||
value : float | ||
The repetition penalty | ||
References | ||
---------- | ||
See `Ctrl: A Conditional Transformer Language Model For Controllable | ||
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. | ||
""" | ||
return self._set(repetitionPenalty=value) | ||
|
||
def setNoRepeatNgramSize(self, value): | ||
"""Sets size of n-grams that can only occur once. | ||
If set to int > 0, all ngrams of that size can only occur once. | ||
Parameters | ||
---------- | ||
value : int | ||
N-gram size can only occur once | ||
""" | ||
return self._set(noRepeatNgramSize=value) | ||
|
||
@keyword_only | ||
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.CPMTransformer", java_model=None): | ||
super(CPMTransformer, self).__init__(classname=classname, java_model=java_model) | ||
self._setDefault(minOutputLength=0, maxOutputLength=50, doSample=False, temperature=0.8, topK=100, topP=0.8, | ||
repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1) | ||
|
||
@staticmethod | ||
def loadSavedModel(folder, spark_session): | ||
"""Loads a locally saved model. | ||
Parameters | ||
---------- | ||
folder : str | ||
Folder of the saved model | ||
spark_session : pyspark.sql.SparkSession | ||
The current SparkSession | ||
Returns | ||
------- | ||
CPMTransformer | ||
The restored model | ||
""" | ||
from sparknlp.internal import _CPMLoader | ||
jModel = _CPMLoader(folder, spark_session._jsparkSession)._java_obj | ||
return CPMTransformer(java_model=jModel) | ||
|
||
@staticmethod | ||
def pretrained(name="llama_2_7b_chat_hf_int4", lang="en", remote_loc=None): | ||
"""Downloads and loads a pretrained model. | ||
Parameters | ||
---------- | ||
name : str, optional | ||
Name of the pretrained model, by default "llama_2_7b_chat_hf_int4" | ||
lang : str, optional | ||
Language of the pretrained model, by default "en" | ||
remote_loc : str, optional | ||
Optional remote address of the resource, by default None. Will use | ||
Spark NLPs repositories otherwise. | ||
Returns | ||
------- | ||
CPMTransformer | ||
The restored model | ||
""" | ||
from sparknlp.pretrained import ResourceDownloader | ||
return ResourceDownloader.downloadModel(CPMTransformer, name, lang, remote_loc) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
# Copyright 2017-2024 John Snow Labs | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import unittest | ||
|
||
import pytest | ||
|
||
from sparknlp.annotator import * | ||
from sparknlp.base import * | ||
from test.util import SparkContextForTest | ||
|
||
|
||
@pytest.mark.slow | ||
class CPMTransformerTextGenerationTestSpec(unittest.TestCase): | ||
def setUp(self): | ||
self.spark = SparkContextForTest.spark | ||
|
||
def runTest(self): | ||
data = self.spark.createDataFrame([ | ||
[1, """Leonardo Da Vinci invented the microscope?""".strip().replace("\n", " ")]]).toDF("id", "text") | ||
|
||
document_assembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("documents") | ||
|
||
cpm = CPMTransformer \ | ||
.pretrained() \ | ||
.setMaxOutputLength(50) \ | ||
.setDoSample(False) \ | ||
.setInputCols(["documents"]) \ | ||
.setOutputCol("generation") | ||
|
||
pipeline = Pipeline().setStages([document_assembler, cpm]) | ||
results = pipeline.fit(data).transform(data) | ||
|
||
results.select("generation.result").show(truncate=False) |
Oops, something went wrong.