Skip to content

Commit

Permalink
added cpm python api and tests
Browse files Browse the repository at this point in the history
  • Loading branch information
prabod committed Mar 11, 2024
1 parent 73d2dbc commit 1ccf943
Show file tree
Hide file tree
Showing 5 changed files with 373 additions and 11 deletions.
1 change: 1 addition & 0 deletions python/sparknlp/annotator/seq2seq/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,3 +19,4 @@
from sparknlp.annotator.seq2seq.bart_transformer import *
from sparknlp.annotator.seq2seq.llama2_transformer import *
from sparknlp.annotator.seq2seq.m2m100_transformer import *
from sparknlp.annotator.seq2seq.cpm_transformer import *
321 changes: 321 additions & 0 deletions python/sparknlp/annotator/seq2seq/cpm_transformer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,321 @@
# Copyright 2017-2024 John Snow Labs
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains classes for the CPMTransformer."""

from sparknlp.common import *


class CPMTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
"""MiniCPM: Unveiling the Potential of End-side Large Language Models
MiniCPM is a series of edge-side large language models, with the base model, MiniCPM-2B,
having 2.4B non-embedding parameters. It ranks closely with Mistral-7B on comprehensive
benchmarks (with better performance in Chinese, mathematics, and coding abilities), surpassing
models like Llama2-13B, MPT-30B, and Falcon-40B. On the MTBench benchmark, which is closest to
user experience, MiniCPM-2B also outperforms many representative open-source models such as
Llama2-70B-Chat, Vicuna-33B, Mistral-7B-Instruct-v0.1, and Zephyr-7B-alpha.
After DPO, MiniCPM outperforms Llama2-70B-Chat, Vicuna-33B, Mistral-7B-Instruct-v0.1,
Zephyr-7B-alpha, etc. on MTBench.
MiniCPM-V, based on MiniCPM-2B, achieves the best overall performance among multimodel models
of the same scale, surpassing existing multimodal large models built on Phi-2 and achieving
performance comparable to or even better than 9.6B Qwen-VL-Chat on some tasks.
MiniCPM can be deployed and infer on smartphones, and the speed of streaming output is
relatively higher than the verbal speed of human.
Pretrained models can be loaded with :meth:`.pretrained` of the companion
object:
>>> cpm = CPMTransformer.pretrained() \\
... .setInputCols(["document"]) \\
... .setOutputCol("generation")
The default model is ``"llam2-7b"``, if no name is provided. For available
pretrained models please see the `Models Hub
<https://sparknlp.org/models?q=cpm>`__.
====================== ======================
Input Annotation types Output Annotation type
====================== ======================
``DOCUMENT`` ``DOCUMENT``
====================== ======================
Parameters
----------
configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
minOutputLength
Minimum length of the sequence to be generated, by default 0
maxOutputLength
Maximum length of output text, by default 20
doSample
Whether or not to use sampling; use greedy decoding otherwise, by default False
temperature
The value used to module the next token probabilities, by default 1.0
topK
The number of highest probability vocabulary tokens to keep for
top-k-filtering, by default 50
topP
Top cumulative probability for vocabulary tokens, by default 1.0
If set to float < 1, only the most probable tokens with probabilities
that add up to ``topP`` or higher are kept for generation.
repetitionPenalty
The parameter for repetition penalty, 1.0 means no penalty. , by default
1.0
noRepeatNgramSize
If set to int > 0, all ngrams of that size can only occur once, by
default 0
ignoreTokenIds
A list of token ids which are ignored in the decoder's output, by
default []
Notes
-----
This is a very computationally expensive module especially on larger
sequence. The use of an accelerator such as GPU is recommended.
References
----------
- `MiniCPM: Unveiling the Potential of End-side Large Language Models
<https://shengdinghu.notion.site/MiniCPM-Unveiling-the-Potential-of-End-side-Large-Language-Models-d4d3a8c426424654a4e80e42a711cb20>`
- https://github.com/OpenBMB/MiniCPM
Examples
--------
>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> documentAssembler = DocumentAssembler() \\
... .setInputCol("text") \\
... .setOutputCol("documents")
>>> cpm = CPMTransformer.pretrained("llama_2_7b_chat_hf_int4") \\
... .setInputCols(["documents"]) \\
... .setMaxOutputLength(50) \\
... .setOutputCol("generation")
>>> pipeline = Pipeline().setStages([documentAssembler, cpm])
>>> data = spark.createDataFrame([["My name is Leonardo."]]).toDF("text")
>>> result = pipeline.fit(data).transform(data)
>>> result.select("summaries.generation").show(truncate=False)
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|result |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|[My name is Leonardo. I am a student at the University of California, Los Angeles. I have a passion for writing and learning about different cultures. I enjoy playing basketball and watching movies]|
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
"""

name = "CPMTransformer"

inputAnnotatorTypes = [AnnotatorType.DOCUMENT]

outputAnnotatorType = AnnotatorType.DOCUMENT

configProtoBytes = Param(Params._dummy(), "configProtoBytes",
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
TypeConverters.toListInt)

minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
typeConverter=TypeConverters.toInt)

maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
typeConverter=TypeConverters.toInt)

doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
typeConverter=TypeConverters.toBoolean)

temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
typeConverter=TypeConverters.toFloat)

topK = Param(Params._dummy(), "topK",
"The number of highest probability vocabulary tokens to keep for top-k-filtering",
typeConverter=TypeConverters.toInt)

topP = Param(Params._dummy(), "topP",
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
typeConverter=TypeConverters.toFloat)

repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
typeConverter=TypeConverters.toFloat)

noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
"If set to int > 0, all ngrams of that size can only occur once",
typeConverter=TypeConverters.toInt)

ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
"A list of token ids which are ignored in the decoder's output",
typeConverter=TypeConverters.toListInt)

def setIgnoreTokenIds(self, value):
"""A list of token ids which are ignored in the decoder's output.
Parameters
----------
value : List[int]
The words to be filtered out
"""
return self._set(ignoreTokenIds=value)

def setConfigProtoBytes(self, b):
"""Sets configProto from tensorflow, serialized into byte array.
Parameters
----------
b : List[int]
ConfigProto from tensorflow, serialized into byte array
"""
return self._set(configProtoBytes=b)

def setMinOutputLength(self, value):
"""Sets minimum length of the sequence to be generated.
Parameters
----------
value : int
Minimum length of the sequence to be generated
"""
return self._set(minOutputLength=value)

def setMaxOutputLength(self, value):
"""Sets maximum length of output text.
Parameters
----------
value : int
Maximum length of output text
"""
return self._set(maxOutputLength=value)

def setDoSample(self, value):
"""Sets whether or not to use sampling, use greedy decoding otherwise.
Parameters
----------
value : bool
Whether or not to use sampling; use greedy decoding otherwise
"""
return self._set(doSample=value)

def setTemperature(self, value):
"""Sets the value used to module the next token probabilities.
Parameters
----------
value : float
The value used to module the next token probabilities
"""
return self._set(temperature=value)

def setTopK(self, value):
"""Sets the number of highest probability vocabulary tokens to keep for
top-k-filtering.
Parameters
----------
value : int
Number of highest probability vocabulary tokens to keep
"""
return self._set(topK=value)

def setTopP(self, value):
"""Sets the top cumulative probability for vocabulary tokens.
If set to float < 1, only the most probable tokens with probabilities
that add up to ``topP`` or higher are kept for generation.
Parameters
----------
value : float
Cumulative probability for vocabulary tokens
"""
return self._set(topP=value)

def setRepetitionPenalty(self, value):
"""Sets the parameter for repetition penalty. 1.0 means no penalty.
Parameters
----------
value : float
The repetition penalty
References
----------
See `Ctrl: A Conditional Transformer Language Model For Controllable
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
"""
return self._set(repetitionPenalty=value)

def setNoRepeatNgramSize(self, value):
"""Sets size of n-grams that can only occur once.
If set to int > 0, all ngrams of that size can only occur once.
Parameters
----------
value : int
N-gram size can only occur once
"""
return self._set(noRepeatNgramSize=value)

@keyword_only
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.CPMTransformer", java_model=None):
super(CPMTransformer, self).__init__(classname=classname, java_model=java_model)
self._setDefault(minOutputLength=0, maxOutputLength=50, doSample=False, temperature=0.8, topK=100, topP=0.8,
repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1)

@staticmethod
def loadSavedModel(folder, spark_session):
"""Loads a locally saved model.
Parameters
----------
folder : str
Folder of the saved model
spark_session : pyspark.sql.SparkSession
The current SparkSession
Returns
-------
CPMTransformer
The restored model
"""
from sparknlp.internal import _CPMLoader
jModel = _CPMLoader(folder, spark_session._jsparkSession)._java_obj
return CPMTransformer(java_model=jModel)

@staticmethod
def pretrained(name="llama_2_7b_chat_hf_int4", lang="en", remote_loc=None):
"""Downloads and loads a pretrained model.
Parameters
----------
name : str, optional
Name of the pretrained model, by default "llama_2_7b_chat_hf_int4"
lang : str, optional
Language of the pretrained model, by default "en"
remote_loc : str, optional
Optional remote address of the resource, by default None. Will use
Spark NLPs repositories otherwise.
Returns
-------
CPMTransformer
The restored model
"""
from sparknlp.pretrained import ResourceDownloader
return ResourceDownloader.downloadModel(CPMTransformer, name, lang, remote_loc)
5 changes: 5 additions & 0 deletions python/sparknlp/internal/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,6 +110,11 @@ def __init__(self, path, jspark):
path,
jspark)

class _CPMLoader(ExtendedJavaWrapper):
def __init__(self, path, jspark):
super(_CPMLoader, self).__init__(
"com.johnsnowlabs.nlp.annotators.seq2seq.CPMTransformer.loadSavedModel", path, jspark)


class _DistilBertLoader(ExtendedJavaWrapper):
def __init__(self, path, jspark):
Expand Down
46 changes: 46 additions & 0 deletions python/test/annotator/seq2seq/cpm_transformer_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
# Copyright 2017-2024 John Snow Labs
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest

import pytest

from sparknlp.annotator import *
from sparknlp.base import *
from test.util import SparkContextForTest


@pytest.mark.slow
class CPMTransformerTextGenerationTestSpec(unittest.TestCase):
def setUp(self):
self.spark = SparkContextForTest.spark

def runTest(self):
data = self.spark.createDataFrame([
[1, """Leonardo Da Vinci invented the microscope?""".strip().replace("\n", " ")]]).toDF("id", "text")

document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")

cpm = CPMTransformer \
.pretrained() \
.setMaxOutputLength(50) \
.setDoSample(False) \
.setInputCols(["documents"]) \
.setOutputCol("generation")

pipeline = Pipeline().setStages([document_assembler, cpm])
results = pipeline.fit(data).transform(data)

results.select("generation.result").show(truncate=False)
Loading

0 comments on commit 1ccf943

Please sign in to comment.