Skip to content

Commit

Permalink
Add model 2023-03-09-medical_qa_biogpt_en (#13621)
Browse files Browse the repository at this point in the history
Co-authored-by: Cabir40 <cabir4006@gmail.com>
  • Loading branch information
jsl-models and Cabir40 authored Mar 9, 2023
1 parent 82aa769 commit 0c97790
Showing 1 changed file with 124 additions and 0 deletions.
124 changes: 124 additions & 0 deletions docs/_posts/Cabir40/2023-03-09-medical_qa_biogpt_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
---
layout: model
title: Medical Question Answering (biogpt)
author: John Snow Labs
name: medical_qa_biogpt
date: 2023-03-09
tags: [licensed, clinical, en, gpt, biogpt, pubmed, question_answering, tensorflow]
task: Question Answering
language: en
edition: Healthcare NLP 4.3.1
spark_version: 3.0
supported: true
engine: tensorflow
annotator: MedicalQuestionAnswering
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

This model has been trained with medical documents and can generate two types of answers, short and long.
Types of questions are supported: `"short"` (producing yes/no/maybe) answers and `"full"` (long answers).

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/clinical/models/medical_qa_biogpt_en_4.3.1_3.0_1678355315206.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/clinical/models/medical_qa_biogpt_en_4.3.1_3.0_1678355315206.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
document_assembler = MultiDocumentAssembler()\
.setInputCols("question", "context")\
.setOutputCols("document_question", "document_context")

med_qa = sparknlp_jsl.annotators.MedicalQuestionAnswering\
.pretrained("medical_qa_biogpt","en","clinical/models")\
.setInputCols(["document_question", "document_context"])\
.setOutputCol("answer")\
.setMaxNewTokens(30)\
.setTopK(1)\
.setQuestionType("long") # "short"

pipeline = Pipeline(stages=[document_assembler, med_qa])

paper_abstract = "The visual indexing theory proposed by Zenon Pylyshyn (Cognition, 32, 65-97, 1989) predicts that visual attention mechanisms are employed when mental images are projected onto a visual scene."
long_question = "What is the effect of directing attention on memory?"
yes_no_question = "Does directing attention improve memory for items?"

data = spark.createDataFrame(
[
[long_question, paper_abstract, "long"],
[yes_no_question, paper_abstract, "short"],
]
).toDF("question", "context", "question_type")

pipeline.fit(data).transform(data.where("question_type == 'long'"))\
.select("answer.result")\
.show(truncate=False)

pipeline.fit(data).transform(data.where("question_type == 'short'"))\
.select("answer.result")\
.show(truncate=False)
```
```scala
val document_assembler = new MultiDocumentAssembler()
.setInputCols("question", "context")
.setOutputCols("document_question", "document_context")

val med_qa = MedicalQuestionAnswering
.pretrained("medical_qa_biogpt","en","clinical/models")
.setInputCols(("document_question", "document_context"))
.setOutputCol("answer")
.setMaxNewTokens(30)
.setTopK(1)
.setQuestionType("long") # "short"

val pipeline = new Pipeline().setStages(Array(document_assembler, med_qa))

paper_abstract = "The visual indexing theory proposed by Zenon Pylyshyn (Cognition, 32, 65-97, 1989) predicts that visual attention mechanisms are employed when mental images are projected onto a visual scene."
long_question = "What is the effect of directing attention on memory?"
yes_no_question = "Does directing attention improve memory for items?"

val data = Seq(
(long_question, paper_abstract,"long" ),
(yes_no_question, paper_abstract, "short"))
.toDS.toDF("question", "context", "question_type")

val result = pipeline.fit(data).transform(data)
```
</div>

## Results

```bash
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|result |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|[the present study investigated whether directing spatial attention to one location in a visual array would enhance memory for the array features. participants memorized two]|
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
```

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|medical_qa_biogpt|
|Compatibility:|Healthcare NLP 4.3.1+|
|License:|Licensed|
|Edition:|Official|
|Language:|en|
|Size:|1.1 GB|
|Case sensitive:|true|

0 comments on commit 0c97790

Please sign in to comment.