-
Notifications
You must be signed in to change notification settings - Fork 717
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
2023-02-20-bert_embeddings_pretrain_ko (#13548)
* Add model 2023-02-20-bert_embeddings_pretrain_ko * Update 2023-02-20-bert_embeddings_pretrain_ko.md * Update 2023-02-20-bert_embeddings_pretrain_ko.md * Add model 2023-02-20-bert_embeddings_base_uncased_issues_128_en * Update 2023-02-20-bert_embeddings_base_uncased_issues_128_en.md * Add model 2023-02-21-chemical_uncased_finetuned_cust_c2_en * Update 2023-02-21-chemical_uncased_finetuned_cust_c2_en.md * Delete 2023-02-21-chemical_uncased_finetuned_cust_c2_en.md * Add model 2023-02-21-bert_embeddings_chemical_uncased_finetuned_cust_c2_en * Update 2023-02-21-bert_embeddings_chemical_uncased_finetuned_cust_c2_en.md * Add model 2023-02-21-bert_embeddings_olm_base_uncased_oct_2022_en * Update 2023-02-21-bert_embeddings_olm_base_uncased_oct_2022_en.md * Add model 2023-02-21-bert_embeddings_chemical_uncased_finetuned_cust_c1_cust_en * Update 2023-02-21-bert_embeddings_chemical_uncased_finetuned_cust_c1_cust_en.md * Add model 2023-02-22-bert_embeddings_carlbert_webex_mlm_spatial_en * Update 2023-02-22-bert_embeddings_carlbert_webex_mlm_spatial_en.md * Add model 2023-02-22-bert_embeddings_distil_clinical_en * Update 2023-02-22-bert_embeddings_distil_clinical_en.md * Add model 2023-02-23-distilbert_embeddings_base_multilingual_cased_xx * Update 2023-02-23-distilbert_embeddings_base_multilingual_cased_xx.md * Add model 2023-02-23-deberta_embeddings_erlangshen_v2_chinese_sentencepiece_zh * Update 2023-02-23-deberta_embeddings_erlangshen_v2_chinese_sentencepiece_zh.md --------- Co-authored-by: Mary-Sci <meryemyildiz366@gmail.com> Co-authored-by: Merve Ertas Uslu <67653613+Mary-Sci@users.noreply.github.com>
- Loading branch information
1 parent
0347607
commit 0c314ef
Showing
9 changed files
with
865 additions
and
0 deletions.
There are no files selected for viewing
97 changes: 97 additions & 0 deletions
97
docs/_posts/Mary-Sci/2023-02-20-bert_embeddings_base_uncased_issues_128_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
--- | ||
layout: model | ||
title: English Bert Embeddings Cased model (from antoinev17) | ||
author: John Snow Labs | ||
name: bert_embeddings_base_uncased_issues_128 | ||
date: 2023-02-20 | ||
tags: [open_source, bert, bert_embeddings, bertformaskedlm, en, tensorflow] | ||
task: Embeddings | ||
language: en | ||
edition: Spark NLP 4.3.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: BertEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained BertEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `bert-base-uncased-issues-128` is a English model originally trained by `antoinev17 | ||
`. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_embeddings_base_uncased_issues_128_en_4.3.0_3.0_1676927301180.zip){:.button.button-orange} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_embeddings_base_uncased_issues_128_en_4.3.0_3.0_1676927301180.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
|
||
```python | ||
documentAssembler = DocumentAssembler() \ | ||
.setInputCols(["text"]) \ | ||
.setOutputCols("document") | ||
|
||
tokenizer = Tokenizer() \ | ||
.setInputCols("document") \ | ||
.setOutputCol("token") | ||
|
||
embeddings = BertEmbeddings.pretrained("bert_embeddings_base_uncased_issues_128","ko") \ | ||
.setInputCols(["document", "token"]) \ | ||
.setOutputCol("embeddings") \ | ||
.setCaseSensitive(True) | ||
|
||
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings]) | ||
|
||
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text") | ||
|
||
result = pipeline.fit(data).transform(data) | ||
``` | ||
```scala | ||
val documentAssembler = new DocumentAssembler() | ||
.setInputCols(Array("text")) | ||
.setOutputCols(Array("document")) | ||
|
||
val tokenizer = new Tokenizer() | ||
.setInputCols("document") | ||
.setOutputCol("token") | ||
|
||
val embeddings = BertEmbeddings.pretrained("bert_embeddings_base_uncased_issues_128","ko") | ||
.setInputCols(Array("document", "token")) | ||
.setOutputCol("embeddings") | ||
.setCaseSensitive(True) | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings)) | ||
|
||
val data = Seq("I love Spark NLP").toDS.toDF("text") | ||
|
||
val result = pipeline.fit(data).transform(data) | ||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|bert_embeddings_base_uncased_issues_128| | ||
|Compatibility:|Spark NLP 4.3.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[sentence, token]| | ||
|Output Labels:|[bert]| | ||
|Language:|en| | ||
|Size:|410.1 MB| | ||
|Case sensitive:|true| | ||
|
||
## References | ||
|
||
https://huggingface.co/antoinev17/bert-base-uncased-issues-128 |
96 changes: 96 additions & 0 deletions
96
docs/_posts/Mary-Sci/2023-02-20-bert_embeddings_pretrain_ko.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
--- | ||
layout: model | ||
title: Korean Bert Embeddings Cased model (from onlydj96) | ||
author: John Snow Labs | ||
name: bert_embeddings_pretrain | ||
date: 2023-02-20 | ||
tags: [open_source, bert, bert_embeddings, bertformaskedlm, ko, tensorflow] | ||
task: Embeddings | ||
language: ko | ||
edition: Spark NLP 4.3.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: BertEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained BertEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `bert_pretrain` is a Korean model originally trained by `onlydj96`. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_embeddings_pretrain_ko_4.3.0_3.0_1676925661631.zip){:.button.button-orange} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_embeddings_pretrain_ko_4.3.0_3.0_1676925661631.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
|
||
```python | ||
documentAssembler = DocumentAssembler() \ | ||
.setInputCols(["text"]) \ | ||
.setOutputCols("document") | ||
|
||
tokenizer = Tokenizer() \ | ||
.setInputCols("document") \ | ||
.setOutputCol("token") | ||
|
||
embeddings = BertEmbeddings.pretrained("bert_embeddings_pretrain","ko") \ | ||
.setInputCols(["document", "token"]) \ | ||
.setOutputCol("embeddings") \ | ||
.setCaseSensitive(True) | ||
|
||
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings]) | ||
|
||
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text") | ||
|
||
result = pipeline.fit(data).transform(data) | ||
``` | ||
```scala | ||
val documentAssembler = new DocumentAssembler() | ||
.setInputCols(Array("text")) | ||
.setOutputCols(Array("document")) | ||
|
||
val tokenizer = new Tokenizer() | ||
.setInputCols("document") | ||
.setOutputCol("token") | ||
|
||
val embeddings = BertEmbeddings.pretrained("bert_embeddings_pretrain","ko") | ||
.setInputCols(Array("document", "token")) | ||
.setOutputCol("embeddings") | ||
.setCaseSensitive(true) | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings)) | ||
|
||
val data = Seq("I love Spark NLP").toDS.toDF("text") | ||
|
||
val result = pipeline.fit(data).transform(data) | ||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|bert_embeddings_pretrain| | ||
|Compatibility:|Spark NLP 4.3.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[sentence, token]| | ||
|Output Labels:|[bert]| | ||
|Language:|ko| | ||
|Size:|415.5 MB| | ||
|Case sensitive:|true| | ||
|
||
## References | ||
|
||
https://huggingface.co/onlydj96/bert_pretrain |
96 changes: 96 additions & 0 deletions
96
...ry-Sci/2023-02-21-bert_embeddings_chemical_uncased_finetuned_cust_c1_cust_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
--- | ||
layout: model | ||
title: English Bert Embeddings Cased model (from Shafin) | ||
author: John Snow Labs | ||
name: bert_embeddings_chemical_uncased_finetuned_cust_c1_cust | ||
date: 2023-02-21 | ||
tags: [open_source, bert, bert_embeddings, bertformaskedlm, en, tensorflow] | ||
task: Embeddings | ||
language: en | ||
edition: Spark NLP 4.3.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: BertEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained BertEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `chemical-bert-uncased-finetuned-cust-c1-cust` is a English model originally trained by `Shafin`. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_embeddings_chemical_uncased_finetuned_cust_c1_cust_en_4.3.0_3.0_1677001598364.zip){:.button.button-orange} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_embeddings_chemical_uncased_finetuned_cust_c1_cust_en_4.3.0_3.0_1677001598364.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
|
||
```python | ||
documentAssembler = DocumentAssembler() \ | ||
.setInputCols(["text"]) \ | ||
.setOutputCols("document") | ||
|
||
tokenizer = Tokenizer() \ | ||
.setInputCols("document") \ | ||
.setOutputCol("token") | ||
|
||
embeddings = BertEmbeddings.pretrained("bert_embeddings_chemical_uncased_finetuned_cust_c1_cust","en") \ | ||
.setInputCols(["document", "token"]) \ | ||
.setOutputCol("embeddings") \ | ||
.setCaseSensitive(True) | ||
|
||
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings]) | ||
|
||
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text") | ||
|
||
result = pipeline.fit(data).transform(data) | ||
``` | ||
```scala | ||
val documentAssembler = new DocumentAssembler() | ||
.setInputCols(Array("text")) | ||
.setOutputCols(Array("document")) | ||
|
||
val tokenizer = new Tokenizer() | ||
.setInputCols("document") | ||
.setOutputCol("token") | ||
|
||
val embeddings = BertEmbeddings.pretrained("bert_embeddings_chemical_uncased_finetuned_cust_c1_cust","en") | ||
.setInputCols(Array("document", "token")) | ||
.setOutputCol("embeddings") | ||
.setCaseSensitive(True) | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings)) | ||
|
||
val data = Seq("I love Spark NLP").toDS.toDF("text") | ||
|
||
val result = pipeline.fit(data).transform(data) | ||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|bert_embeddings_chemical_uncased_finetuned_cust_c1_cust| | ||
|Compatibility:|Spark NLP 4.3.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[sentence, token]| | ||
|Output Labels:|[bert]| | ||
|Language:|en| | ||
|Size:|412.1 MB| | ||
|Case sensitive:|true| | ||
|
||
## References | ||
|
||
https://huggingface.co/shafin/chemical-bert-uncased-finetuned-cust-c1-cust |
96 changes: 96 additions & 0 deletions
96
...ts/Mary-Sci/2023-02-21-bert_embeddings_chemical_uncased_finetuned_cust_c2_en.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
--- | ||
layout: model | ||
title: English Bert Embeddings Cased model (from Shafin) | ||
author: John Snow Labs | ||
name: bert_embeddings_chemical_uncased_finetuned_cust_c2 | ||
date: 2023-02-21 | ||
tags: [open_source, bert, bert_embeddings, bertformaskedlm, en, tensorflow] | ||
task: Embeddings | ||
language: en | ||
edition: Spark NLP 4.3.0 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: tensorflow | ||
annotator: BertEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
Pretrained BertEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `chemical-bert-uncased-finetuned-cust-c2` is a English model originally trained by `shafin`. | ||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_embeddings_chemical_uncased_finetuned_cust_c2_en_4.3.0_3.0_1676998811176.zip){:.button.button-orange} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_embeddings_chemical_uncased_finetuned_cust_c2_en_4.3.0_3.0_1676998811176.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
|
||
```python | ||
documentAssembler = DocumentAssembler() \ | ||
.setInputCols(["text"]) \ | ||
.setOutputCols("document") | ||
|
||
tokenizer = Tokenizer() \ | ||
.setInputCols("document") \ | ||
.setOutputCol("token") | ||
|
||
embeddings = BertEmbeddings.pretrained("bert_embeddings_chemical_uncased_finetuned_cust_c2","en") \ | ||
.setInputCols(["document", "token"]) \ | ||
.setOutputCol("embeddings") \ | ||
.setCaseSensitive(True) | ||
|
||
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings]) | ||
|
||
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text") | ||
|
||
result = pipeline.fit(data).transform(data) | ||
``` | ||
```scala | ||
val documentAssembler = new DocumentAssembler() | ||
.setInputCols(Array("text")) | ||
.setOutputCols(Array("document")) | ||
|
||
val tokenizer = new Tokenizer() | ||
.setInputCols("document") | ||
.setOutputCol("token") | ||
|
||
val embeddings = BertEmbeddings.pretrained("bert_embeddings_chemical_uncased_finetuned_cust_c2","en") | ||
.setInputCols(Array("document", "token")) | ||
.setOutputCol("embeddings") | ||
.setCaseSensitive(True) | ||
|
||
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings)) | ||
|
||
val data = Seq("I love Spark NLP").toDS.toDF("text") | ||
|
||
val result = pipeline.fit(data).transform(data) | ||
``` | ||
</div> | ||
|
||
{:.model-param} | ||
## Model Information | ||
|
||
{:.table-model} | ||
|---|---| | ||
|Model Name:|bert_embeddings_chemical_uncased_finetuned_cust_c2| | ||
|Compatibility:|Spark NLP 4.3.0+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[sentence, token]| | ||
|Output Labels:|[bert]| | ||
|Language:|en| | ||
|Size:|412.1 MB| | ||
|Case sensitive:|true| | ||
|
||
## References | ||
|
||
https://huggingface.co/shafin/chemical-bert-uncased-finetuned-cust-c2 |
Oops, something went wrong.