Skip to content

Commit

Permalink
Updated documentation (#13556)
Browse files Browse the repository at this point in the history
* Added links to Python API

* Updated licensed utility and helpers docs

* Added ModelTracer to utility and helper page

* Added AnnotationMerger page

* Added BertSentenceChunkEmbeddings page

* Added ChunkMapper and ChunkConverter pages

* Added DateNormalizer page

* Added ChunkMapperFilterer page

* Added ChunkMapperFilterer page

* Added Doc2ChunkInternal page

* Added DocumentHashCoder page

* Added ZeroShotNerModel page

* Added ZeroShotRelationExtractionModel page

* Fix Python API link for CoNLL dataset page

* Added ChunkMapperFilterer page

* Added ChunkSentenceSplitter page

* Added ChunkSentenceSplitter page

* Added AssertionChunkConverter page

* Add Python API link to license annotator template

* Added Risk Adjustments Score Calculation page

* Added missing parameters on Python code

* Added .vscode to gitignore

* Updated licensed annotators docs

* Added ChunkEntityResolver page

* SentenceEntityResolver doesn't have ner_chunks as input

* Updated docstrings

* Updated docs for SentenceEntityResolver

---------

Co-authored-by: Christian Kasim Loan <christian.kasim.loan@gmail.com>
Co-authored-by: Maziyar Panahi <maziyar.panahi@iscpif.fr>
  • Loading branch information
3 people authored Feb 27, 2023
1 parent 08819a7 commit 0b94ccf
Show file tree
Hide file tree
Showing 81 changed files with 188 additions and 185 deletions.
2 changes: 1 addition & 1 deletion docs/_posts/2020-11-27-sbiobertresolve_cpt_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ sbert_embedder = BertSentenceEmbeddings\
.setOutputCol("sbert_embeddings")

cpt_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_cpt","en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down
2 changes: 1 addition & 1 deletion docs/_posts/2020-11-27-sbiobertresolve_icd10cm_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ sbert_embedder = BertSentenceEmbeddings\
.setOutputCol("sbert_embeddings")

icd10_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm","en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down
2 changes: 1 addition & 1 deletion docs/_posts/2020-11-27-sbiobertresolve_icd10pcs_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ sbert_embedder = BertSentenceEmbeddings\
.setOutputCol("sbert_embeddings")

icd10pcs_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10pcs","en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down
2 changes: 1 addition & 1 deletion docs/_posts/2020-11-27-sbiobertresolve_icdo_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ sbert_embedder = BertSentenceEmbeddings\
.setOutputCol("sbert_embeddings")

icdo_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icdo","en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down
2 changes: 1 addition & 1 deletion docs/_posts/2020-11-27-sbiobertresolve_rxnorm_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ sbert_embedder = BertSentenceEmbeddings\
.setOutputCol("sbert_embeddings")

rxnorm_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_rxnorm","en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ sbert_embedder = BertSentenceEmbeddings\
.setOutputCol("sbert_embeddings")

snomed_aux_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_snomed_auxConcepts","en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ sbert_embedder = BertSentenceEmbeddings\
.setOutputCol("sbert_embeddings")

snomed_aux_int_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_snomed_auxConcepts_int","en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ sbert_embedder = BertSentenceEmbeddings\
.setOutputCol("sbert_embeddings")

snomed_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_snomed_findings","en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ sbert_embedder = BertSentenceEmbeddings\
.setOutputCol("sbert_embeddings")

icd10_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_augmented","en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand All @@ -68,7 +68,7 @@ val sbert_embedder = BertSentenceEmbeddings

val icd10_resolver = SentenceEntityResolverModel
.pretrained("sbiobertresolve_icd10cm_augmented","en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("resolution")
.setDistanceFunction("EUCLIDEAN")

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en
.setCaseSensitive(True)

resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_loinc_cased", "en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"])\
.setInputCols(["sbert_embeddings"])\
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -129,8 +129,8 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setCaseSensitive(True)

val resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_loinc_cased", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setOutputCol("resolution")
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

val pipeline = new Pipeline().setStages(Array(documentAssembler, sentenceDetector, tokenizer, word_embeddings, rad_ner, rad_ner_converter, chunk2doc, sbert_embedder, resolver))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en
.setOutputCol("sbert_embeddings")

snomed_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_snomed_findings_aux_concepts", "en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("snomed_code")\
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -128,7 +128,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setOutputCol("sbert_embeddings")

val snomed_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_snomed_findings_aux_concepts", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("snomed_code")

val new nlpPipeine().setStages(Array(documentAssembler,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ sbert_embedder = BertSentenceEmbeddings\
.setOutputCol("sbert_embeddings")

resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_umls_findings","en", "clinical/models") \
.setInputCols(["ner_chunk_doc", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down
4 changes: 2 additions & 2 deletions docs/_posts/Ahmetemintek/2022-09-30-icd10_icd9_mapper_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "e
.setOutputCol("sbert_embeddings")

icd_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_augmented_billable_hcc", "en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("icd10cm_code")\
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -80,7 +80,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setOutputCol("sbert_embeddings")

val icd_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_augmented_billable_hcc", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("icd10cm_code")
.setDistanceFunction("EUCLIDEAN")

Expand Down
4 changes: 2 additions & 2 deletions docs/_posts/Ahmetemintek/2022-10-12-sbiobertresolve_cvx_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "e
.setOutputCol("sbert_embeddings")

cvx_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_cvx", "en", "clinical/models")\
.setInputCols(["ner_chunk", "sbert_embeddings"])\
.setInputCols(["sbert_embeddings"])\
.setOutputCol("cvx_code")\
.setDistanceFunction("EUCLIDEAN")

Expand All @@ -66,7 +66,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setOutputCol("sbert_embeddings")

val cvx_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_cvx", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("cvx_code")
.setDistanceFunction("EUCLIDEAN")

Expand Down
4 changes: 2 additions & 2 deletions docs/_posts/Cabir40/2022-03-01-sbiobertresolve_atc_en_2_4.md
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "e
.setCaseSensitive(False)

atc_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_atc", "en", "clinical/models")\
.setInputCols(["ner_chunk", "sentence_embeddings"]) \
.setInputCols(["sentence_embeddings"]) \
.setOutputCol("atc_code")\
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -133,7 +133,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setCaseSensitive(False)

val atc_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_atc", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sentence_embeddings"))
.setInputCols(Array("sentence_embeddings"))
.setOutputCol("atc_code")
.setDistanceFunction("EUCLIDEAN")

Expand Down
4 changes: 2 additions & 2 deletions docs/_posts/Cabir40/2022-03-01-sbiobertresolve_atc_en_3_0.md
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "e
.setCaseSensitive(False)

atc_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_atc", "en", "clinical/models")\
.setInputCols(["ner_chunk", "sentence_embeddings"]) \
.setInputCols(["sentence_embeddings"]) \
.setOutputCol("atc_code")\
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -133,7 +133,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setCaseSensitive(False)

val atc_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_atc", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sentence_embeddings"))
.setInputCols(Array("sentence_embeddings"))
.setOutputCol("atc_code")
.setDistanceFunction("EUCLIDEAN")

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "e
.setOutputCol("sbert_embeddings")

rxnorm_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_rxnorm_action_treatment", "en", "clinical/models")\
.setInputCols(["ner_chunk", "sbert_embeddings"])\
.setInputCols(["sbert_embeddings"])\
.setOutputCol("rxnorm_code")\
.setDistanceFunction("EUCLIDEAN")

Expand All @@ -66,7 +66,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setOutputCol("sbert_embeddings")

val rxnorm_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_rxnorm_action_treatment", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("rxnorm_code")
.setDistanceFunction("EUCLIDEAN")

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "e
.setCaseSensitive(False)

icd_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_slim_billable_hcc", "en", "clinical/models") \
.setInputCols(["ner_chunk", "sentence_embeddings"]) \
.setInputCols(["sentence_embeddings"]) \
.setOutputCol("icd_code")\
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -149,7 +149,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setCaseSensitive(False)

val resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_slim_billable_hcc", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sentence_embeddings"))
.setInputCols(Array("sentence_embeddings"))
.setOutputCol("icd_code")
.setDistanceFunction("EUCLIDEAN")

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "e
.setCaseSensitive(False)

icd_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_slim_normalized", "en", "clinical/models") \
.setInputCols(["ner_chunk", "sentence_embeddings"]) \
.setInputCols(["sentence_embeddings"]) \
.setOutputCol("icd_code")\
.setDistanceFunction("EUCLIDEAN")\
.setReturnCosineDistances(True)
Expand Down Expand Up @@ -151,7 +151,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setCaseSensitive(False)

val resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_slim_normalized", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sentence_embeddings"))
.setInputCols(Array("sentence_embeddings"))
.setOutputCol("icd_code")
.setDistanceFunction("EUCLIDEAN")
.setReturnCosineDistances(True)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli", "e
.setOutputCol("sbert_embeddings")

icd_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_augmented_billable_hcc", "en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("icd10cm_code")\
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -79,7 +79,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setOutputCol("sbert_embeddings")

val icd_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_augmented_billable_hcc", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("icd10cm_code")
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -131,4 +131,3 @@ nlu.load("en.icd10cm_to_snomed").predict("""Diabetes Mellitus""")
|Output Labels:|[mappings]|
|Language:|en|
|Size:|1.1 MB|

Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbert_jsl_medium_uncased", "
.setOutputCol("sbert_embeddings")

snomed_resolver = SentenceEntityResolverModel.pretrained("sbertresolve_snomed_conditions", "en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("snomed_code")\
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -79,7 +79,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbert_jsl_medium_uncased
.setOutputCol("sbert_embeddings")

val snomed_resolver = SentenceEntityResolverModel.pretrained("sbertresolve_snomed_conditions", "en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("snomed_code")
.setDistanceFunction("EUCLIDEAN")

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en
.setOutputCol("sbert_embeddings")

resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_loinc","en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -125,7 +125,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setOutputCol("sbert_embeddings")

val resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_loinc","en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("resolution")
.setDistanceFunction("EUCLIDEAN")

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ sbert_embedder = BertSentenceEmbeddings\
.setOutputCol("sbert_embeddings")

resolver = SentenceEntityResolverModel.pretrained("sbluebertresolve_loinc","en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en
.setOutputCol("sbert_embeddings")

icd10_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_augmented","en", "clinical/models") \
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -115,7 +115,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setOutputCol("sbert_embeddings")

val icd10_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm_augmented","en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("resolution")
.setDistanceFunction("EUCLIDEAN")

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en
.setOutputCol("sbert_embeddings")

icd10_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm","en", "clinical/models") \
.setInputCols(["entities", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -115,7 +115,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setOutputCol("sbert_embeddings")

val icd10_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icd10cm","en", "clinical/models")
.setInputCols(Array("entities", "sbert_embeddings"))
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("resolution")
.setDistanceFunction("EUCLIDEAN")

Expand Down
4 changes: 2 additions & 2 deletions docs/_posts/HashamUlHaq/2021-05-16-sbiobertresolve_icdo_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en
.setOutputCol("sbert_embeddings")

icdo_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icdo","en", "clinical/models")\
.setInputCols(["ner_chunk", "sbert_embeddings"]) \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")

Expand Down Expand Up @@ -117,7 +117,7 @@ val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli"
.setOutputCol("sbert_embeddings")

val icdo_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_icdo","en", "clinical/models")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("resolution")
.setDistanceFunction("EUCLIDEAN")

Expand Down
Loading

0 comments on commit 0b94ccf

Please sign in to comment.