-
Notifications
You must be signed in to change notification settings - Fork 717
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add model 2024-04-05-uae_large_v1_en (#14229)
Co-authored-by: DevinTDHa <duc.hatrung95@gmail.com>
- Loading branch information
1 parent
76518b3
commit 0b04051
Showing
1 changed file
with
120 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
--- | ||
layout: model | ||
title: UAE-Large-V1 for Sentence Embeddings | ||
author: John Snow Labs | ||
name: uae_large_v1 | ||
date: 2024-04-05 | ||
tags: [uae, en, sentence, embeddings, open_source, onnx] | ||
task: Embeddings | ||
language: en | ||
edition: Spark NLP 5.3.3 | ||
spark_version: 3.0 | ||
supported: true | ||
engine: onnx | ||
annotator: UAEEmbeddings | ||
article_header: | ||
type: cover | ||
use_language_switcher: "Python-Scala-Java" | ||
--- | ||
|
||
## Description | ||
|
||
UAE is a novel angle-optimized text embedding model, designed to improve semantic textual | ||
similarity tasks, which are crucial for Large Language Model (LLM) applications. By | ||
introducing angle optimization in a complex space, AnglE effectively mitigates saturation of | ||
the cosine similarity function. | ||
|
||
This model is based on UAE-Large-V1 and was orignally exported from https://huggingface.co/WhereIsAI/UAE-Large-V1. Several embedding pooling strategies can be set. Please refer to the class for more information. | ||
|
||
## Predicted Entities | ||
|
||
|
||
|
||
{:.btn-box} | ||
<button class="button button-orange" disabled>Live Demo</button> | ||
<button class="button button-orange" disabled>Open in Colab</button> | ||
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/uae_large_v1_en_5.3.3_3.0_1712335736995.zip){:.button.button-orange.button-orange-trans.arr.button-icon} | ||
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/uae_large_v1_en_5.3.3_3.0_1712335736995.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3} | ||
|
||
## How to use | ||
|
||
|
||
|
||
<div class="tabs-box" markdown="1"> | ||
{% include programmingLanguageSelectScalaPythonNLU.html %} | ||
```python | ||
import sparknlp | ||
from sparknlp.base import * | ||
from sparknlp.annotator import * | ||
from pyspark.ml import Pipeline | ||
documentAssembler = DocumentAssembler() \ | ||
.setInputCol("text") \ | ||
.setOutputCol("document") | ||
embeddings = UAEEmbeddings.pretrained() \ | ||
.setInputCols(["document"]) \ | ||
.setOutputCol("embeddings") | ||
embeddingsFinisher = EmbeddingsFinisher() \ | ||
.setInputCols("embeddings") \ | ||
.setOutputCols("finished_embeddings") \ | ||
.setOutputAsVector(True) | ||
pipeline = Pipeline().setStages([ | ||
documentAssembler, | ||
embeddings, | ||
embeddingsFinisher | ||
]) | ||
data = spark.createDataFrame([["hello world", "hello moon"]]).toDF("text") | ||
result = pipeline.fit(data).transform(data) | ||
result.selectExpr("explode(finished_embeddings) as result").show(5, 80) | ||
``` | ||
```scala | ||
import spark.implicits._ | ||
import com.johnsnowlabs.nlp.base.DocumentAssembler | ||
import com.johnsnowlabs.nlp.annotators.Tokenizer | ||
import com.johnsnowlabs.nlp.embeddings.UAEEmbeddings | ||
import com.johnsnowlabs.nlp.EmbeddingsFinisher | ||
import org.apache.spark.ml.Pipeline | ||
val documentAssembler = new DocumentAssembler() | ||
.setInputCol("text") | ||
.setOutputCol("document") | ||
val embeddings = UAEEmbeddings.pretrained() | ||
.setInputCols("document") | ||
.setOutputCol("UAE_embeddings") | ||
val embeddingsFinisher = new EmbeddingsFinisher() | ||
.setInputCols("UAE_embeddings") | ||
.setOutputCols("finished_embeddings") | ||
.setOutputAsVector(true) | ||
val pipeline = new Pipeline().setStages(Array( | ||
documentAssembler, | ||
embeddings, | ||
embeddingsFinisher | ||
)) | ||
val data = Seq("hello world", "hello moon").toDF("text") | ||
val result = pipeline.fit(data).transform(data) | ||
result.selectExpr("explode(finished_embeddings) as result").show(5, 80) | ||
``` | ||
</div> | ||
|
||
## Results | ||
|
||
```bash | ||
+--------------------------------------------------------------------------------+ | ||
| result| | ||
+--------------------------------------------------------------------------------+ | ||
|[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...| | ||
|[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...| | ||
+--------------------------------------------------------------------------------+ | ||
``` | ||
{:.model-param} | ||
## Model Information | ||
{:.table-model} | ||
|---|---| | ||
|Model Name:|uae_large_v1| | ||
|Compatibility:|Spark NLP 5.3.3+| | ||
|License:|Open Source| | ||
|Edition:|Official| | ||
|Input Labels:|[document]| | ||
|Output Labels:|[embeddings]| | ||
|Language:|en| | ||
|Size:|1.2 GB| |