Skip to content

Commit

Permalink
refactor README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
tianzhi0549 committed Apr 30, 2020
1 parent 959bb4d commit c62b4f6
Show file tree
Hide file tree
Showing 2 changed files with 50 additions and 25 deletions.
30 changes: 5 additions & 25 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,39 +15,17 @@ To date, AdelaiDet implements the following algorithms:


## Models

All of our trained models are available in the [Model Zoo](MODEL_ZOO.md).

### COCO Object Detecton Baselines with [FCOS](https://arxiv.org/abs/1904.01355)

Name | inf. time | box AP | download
--- |:---:|:---:|:---:
[FCOS_R_50_1x](configs/FCOS-Detection/R_50_1x.yaml) | 16 FPS | 38.7 | [model](https://cloudstor.aarnet.edu.au/plus/s/glqFc13cCoEyHYy/download)
[FCOS_MS_R_50_2x](configs/FCOS-Detection/MS_R_50_2x.yaml) | 16 FPS | 41.0 | [model](https://cloudstor.aarnet.edu.au/plus/s/reA6HVaGX47yKGV/download)
[FCOS_MS_R_101_2x](configs/FCOS-Detection/MS_R_101_2x.yaml) | 12 FPS | 43.1 | [model](https://cloudstor.aarnet.edu.au/plus/s/M3UOT6JcyHy2QW1/download)
[FCOS_MS_X_101_32x8d_2x](configs/FCOS-Detection/MS_X_101_32x8d_2x.yaml) | 6.6 FPS | 43.9 | [model](https://cloudstor.aarnet.edu.au/plus/s/R7H00WeWKZG45pP/download)
[FCOS_MS_X_101_64x4d_2x](configs/FCOS-Detection/MS_X_101_64x4d_2x.yaml) | 6.1 FPS | 44.7 | [model](https://cloudstor.aarnet.edu.au/plus/s/XOLUCzqKYckNII7/download)
[FCOS_MS_X_101_32x8d_dcnv2_2x](configs/FCOS-Detection/MS_X_101_32x8d_2x_dcnv2.yaml) | 4.6 FPS | 46.6 | [model](https://cloudstor.aarnet.edu.au/plus/s/TDsnYK8OXDTrafF/download)

*Except for FCOS_R_50_1x, all other models are trained with multi-scale data augmentation.*

#### FCOS Real-time Models

Name | inf. time | box AP | download
--- |:---:|:---:|:---:
[FCOS_RT_MS_DLA_34_4x_shtw](configs/FCOS-Detection/FCOS_RT/MS_DLA_34_4x_syncbn_shared_towers.yaml) | 52 FPS | 39.1 | [model](https://cloudstor.aarnet.edu.au/plus/s/4vc3XwQezyhNvnB/download)
[FCOS_RT_MS_DLA_34_4x](configs/FCOS-Detection/FCOS_RT/MS_DLA_34_4x_syncbn.yaml) | 46 FPS | 40.3 | [model](https://cloudstor.aarnet.edu.au/plus/s/zNPNyTkizaOOsUQ/download)
[FCOS_RT_MS_R_50_4x](configs/FCOS-Detection/FCOS_RT/MS_R_50_4x_syncbn.yaml) | 38 FPS | 40.2 | [model](https://cloudstor.aarnet.edu.au/plus/s/TlnlXUr6lNNSyoZ/download)

If you prefer BN in FCOS heads, please try the following models.
More models can be found in FCOS [README.md](configs/FCOS-Detection/README.md).

Name | inf. time | box AP | download
--- |:---:|:---:|:---:
[FCOS_RT_MS_DLA_34_4x_shtw_bn](configs/FCOS-Detection/FCOS_RT/MS_DLA_34_4x_syncbn_shared_towers_bn_head.yaml) | 52 FPS | 38.9 | [model](https://cloudstor.aarnet.edu.au/plus/s/rdmHHSs4oCg7l7U/download)
[FCOS_RT_MS_DLA_34_4x_bn](configs/FCOS-Detection/FCOS_RT/MS_DLA_34_4x_syncbn_bn_head.yaml) | 48 FPS | 39.4 | [model](https://cloudstor.aarnet.edu.au/plus/s/T5httPVo1VndbD4/download)
[FCOS_RT_MS_R_50_4x_bn](configs/FCOS-Detection/FCOS_RT/MS_R_50_4x_syncbn_bn_head.yaml) | 40 FPS | 39.3 | [model](https://cloudstor.aarnet.edu.au/plus/s/dHNUNs0YxVhZAmg/download)

*Inference time is measured on a NVIDIA 1080Ti with batch size 1. Real-time models use shorter side 512 for inference.*
Inference time is measured on a NVIDIA 1080Ti with batch size 1.

### COCO Instance Segmentation Baselines with [BlendMask](https://arxiv.org/abs/2001.00309)

Expand All @@ -74,6 +52,8 @@ cd AdelaiDet
python setup.py build develop
```

Some projects may require special setup, please follow their own `README.md` in [configs](configs).

## Quick Start

### Inference with Pre-trained Models
Expand Down Expand Up @@ -115,7 +95,7 @@ OMP_NUM_THREADS=1 python tools/train_net.py \
- The configs are made for 8-GPU training. To train on another number of GPUs, change the `--num-gpus`.
- If you want to measure the inference time, please change `--num-gpus` to 1.
- We set `OMP_NUM_THREADS=1` by default, which achieves the best speed on our machines, please change it as needed.

- This quick start is made for FCOS. If you are using other projects, please check the projects' own `README.md` in [configs](configs).

## Citing AdelaiDet

Expand Down
45 changes: 45 additions & 0 deletions configs/FCOS-Detection/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
# Installation & Quick Start
No special setup needed. The [default instruction](../../README.md#Installation) is fine.

## Models
### COCO Object Detecton Baselines with [FCOS](https://arxiv.org/abs/1904.01355)

Name | inf. time | box AP | download
--- |:---:|:---:|:---:
[FCOS_R_50_1x](configs/FCOS-Detection/R_50_1x.yaml) | 16 FPS | 38.7 | [model](https://cloudstor.aarnet.edu.au/plus/s/glqFc13cCoEyHYy/download)
[FCOS_MS_R_50_2x](configs/FCOS-Detection/MS_R_50_2x.yaml) | 16 FPS | 41.0 | [model](https://cloudstor.aarnet.edu.au/plus/s/reA6HVaGX47yKGV/download)
[FCOS_MS_R_101_2x](configs/FCOS-Detection/MS_R_101_2x.yaml) | 12 FPS | 43.1 | [model](https://cloudstor.aarnet.edu.au/plus/s/M3UOT6JcyHy2QW1/download)
[FCOS_MS_X_101_32x8d_2x](configs/FCOS-Detection/MS_X_101_32x8d_2x.yaml) | 6.6 FPS | 43.9 | [model](https://cloudstor.aarnet.edu.au/plus/s/R7H00WeWKZG45pP/download)
[FCOS_MS_X_101_64x4d_2x](configs/FCOS-Detection/MS_X_101_64x4d_2x.yaml) | 6.1 FPS | 44.7 | [model](https://cloudstor.aarnet.edu.au/plus/s/XOLUCzqKYckNII7/download)
[FCOS_MS_X_101_32x8d_dcnv2_2x](configs/FCOS-Detection/MS_X_101_32x8d_2x_dcnv2.yaml) | 4.6 FPS | 46.6 | [model](https://cloudstor.aarnet.edu.au/plus/s/TDsnYK8OXDTrafF/download)

*Except for FCOS_R_50_1x, all other models are trained with multi-scale data augmentation.*

### FCOS Real-time Models

Name | inf. time | box AP | download
--- |:---:|:---:|:---:
[FCOS_RT_MS_DLA_34_4x_shtw](configs/FCOS-Detection/FCOS_RT/MS_DLA_34_4x_syncbn_shared_towers.yaml) | 52 FPS | 39.1 | [model](https://cloudstor.aarnet.edu.au/plus/s/4vc3XwQezyhNvnB/download)
[FCOS_RT_MS_DLA_34_4x](configs/FCOS-Detection/FCOS_RT/MS_DLA_34_4x_syncbn.yaml) | 46 FPS | 40.3 | [model](https://cloudstor.aarnet.edu.au/plus/s/zNPNyTkizaOOsUQ/download)
[FCOS_RT_MS_R_50_4x](configs/FCOS-Detection/FCOS_RT/MS_R_50_4x_syncbn.yaml) | 38 FPS | 40.2 | [model](https://cloudstor.aarnet.edu.au/plus/s/TlnlXUr6lNNSyoZ/download)

If you prefer BN in FCOS heads, please try the following models.

Name | inf. time | box AP | download
--- |:---:|:---:|:---:
[FCOS_RT_MS_DLA_34_4x_shtw_bn](configs/FCOS-Detection/FCOS_RT/MS_DLA_34_4x_syncbn_shared_towers_bn_head.yaml) | 52 FPS | 38.9 | [model](https://cloudstor.aarnet.edu.au/plus/s/rdmHHSs4oCg7l7U/download)
[FCOS_RT_MS_DLA_34_4x_bn](configs/FCOS-Detection/FCOS_RT/MS_DLA_34_4x_syncbn_bn_head.yaml) | 48 FPS | 39.4 | [model](https://cloudstor.aarnet.edu.au/plus/s/T5httPVo1VndbD4/download)
[FCOS_RT_MS_R_50_4x_bn](configs/FCOS-Detection/FCOS_RT/MS_R_50_4x_syncbn_bn_head.yaml) | 40 FPS | 39.3 | [model](https://cloudstor.aarnet.edu.au/plus/s/dHNUNs0YxVhZAmg/download)

*Inference time is measured on a NVIDIA 1080Ti with batch size 1. Real-time models use shorter side 512 for inference.*

# Citing FCOS
If you use FCOS in your research or wish to refer to the baseline results, please use the following BibTeX entries.
```
@inproceedings{tian2019fcos,
title = {{FCOS}: Fully Convolutional One-Stage Object Detection},
author = {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
booktitle = {Proc. Int. Conf. Computer Vision (ICCV)},
year = {2019}
}
```

0 comments on commit c62b4f6

Please sign in to comment.