Skip to content

Commit

Permalink
move blendmask models to separate readme
Browse files Browse the repository at this point in the history
  • Loading branch information
stan-haochen committed May 1, 2020
1 parent 7a8cd9e commit 628e50d
Show file tree
Hide file tree
Showing 2 changed files with 85 additions and 8 deletions.
10 changes: 2 additions & 8 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,18 +33,12 @@ Inference time is measured on a NVIDIA 1080Ti with batch size 1.

Model | Name |inf. time | box AP | mask AP | download
--- |:---:|:---:|:---:|:---:|:---:
Mask R-CNN | [550_R_50_3x](configs/RCNN/550_R_50_FPN_3x.yaml) | 16 FPS | 39.1 | 35.3 |
BlendMask | [550_R_50_3x](configs/BlendMask/550_R_50_3x.yaml) | 28 FPS | 38.7 | 34.5 | [model](https://cloudstor.aarnet.edu.au/plus/s/R3Qintf7N8UCiIt/download)
BlendMask | [RT_R_50_4x](configs/BlendMask/RT_R_50_4x.yaml) | 30 FPS | 40.1 | 34.6 | [model](https://cloudstor.aarnet.edu.au/plus/s/fmmciLkyaOoY1Tc/download)
BlendMask | [DLA_34_4x](configs/BlendMask/DLA_34_syncbn_4x.yaml) | 32 FPS | 40.9 | 35.2 | [model](https://cloudstor.aarnet.edu.au/plus/s/Lx94rWNnZ8TRd2Y/download)
Mask R-CNN | [R_50_1x](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml) | 13 FPS | 38.6 | 35.2 |
BlendMask | [R_50_1x](configs/BlendMask/R_50_1x.yaml) | 14 FPS | 39.9 | 35.8 | [model](https://cloudstor.aarnet.edu.au/plus/s/zoxXPnr6Hw3OJgK/download)
Mask R-CNN | [R_50_3x](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml) | 13 FPS | 41.0 | 37.2 |
BlendMask | [R_50_3x](configs/BlendMask/R_50_3x.yaml) | 14 FPS | 42.7 | 37.8 | [model](https://cloudstor.aarnet.edu.au/plus/s/ZnaInHFEKst6mvg/download)
Mask R-CNN | [R_101_3x](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml) | 10 FPS | 42.9 | 38.6 |
BlendMask | [R_101_3x](configs/BlendMask/R_101_3x.yaml) | 11 FPS | 44.8 | 39.5 | [model](https://cloudstor.aarnet.edu.au/plus/s/e4fXrliAcMtyEBy/download)
BlendMask | [R_101_dcni3_5x](configs/BlendMask/R_101_dcni3_5x.yaml) | 10 FPS | 46.8 | 41.1 | [model](https://cloudstor.aarnet.edu.au/plus/s/vbnKnQtaGlw8TKv/download)

For more models and information, please refer to BlendMask [README.md](configs/BlendMask/README.md).

### COCO Instance Segmentation Baselines with [MEInst](https://arxiv.org/abs/2003.11712)

Name | inf. time | box AP | mask AP | download
Expand Down
83 changes: 83 additions & 0 deletions configs/BlendMask/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@

# BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation

BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation;
Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yongming Huang, and Youliang Yan;
In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2020.

[[`Paper`](https://arxiv.org/abs/2001.00309)] [[`BibTeX`](#citing-blendmask)]

This project contains training BlendMask for instance segmentation and panoptic segmentation on COCO and configs for segmenting persons on PIC.

## Quick Start

### Demo

```
wget -O blendmask_r101_dcni3_5x.pth https://cloudstor.aarnet.edu.au/plus/s/vbnKnQtaGlw8TKv/download
python demo/demo.py \
--config-file configs/BlendMask/R_101_dcni3_5x.yaml \
--input datasets/coco/val2017/000000005992.jpg \
--confidence-threshold 0.35 \
--opts MODEL.WEIGHTS blendmask_r101_dcni3_5x.pth
```

### Training and evaluation

To train a model with "train_net.py", first
setup the corresponding datasets following
[datasets/README.md](https://github.com/facebookresearch/detectron2/blob/master/datasets/README.md),

Then follow [these steps](https://github.com/aim-uofa/AdelaiDet/tree/master/datasets#expected-dataset-structure-for-adelaidet-instance-detection) to generate blendmask format annotations for instance segmentation.

then run:

```
OMP_NUM_THREADS=1 python tools/train_net.py \
--config-file configs/BlendMask/R_50_1x.yaml \
--num-gpus 4 \
OUTPUT_DIR training_dir/blendmask_R_50_1x
```
To evaluate the model after training, run:

```
OMP_NUM_THREADS=1 python tools/train_net.py \
--config-file configs/BlendMask/R_50_1x.yaml \
--eval-only \
--num-gpus 4 \
OUTPUT_DIR training_dir/blendmask_R_50_1x \
MODEL.WEIGHTS training_dir/blendmask_R_50_1x/model_final.pth
```

## Models
### COCO Instance Segmentation Baselines

Model | Name | inf. time | box AP | download
--- |:---:|:---:|:---:|:---:
Mask R-CNN | [R_50_1x](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml) | 13 FPS | 38.6 | 35.2 |
BlendMask | [R_50_1x](configs/BlendMask/R_50_1x.yaml) | 14 FPS | 39.9 | 35.8 | [model](https://cloudstor.aarnet.edu.au/plus/s/zoxXPnr6Hw3OJgK/download)
Mask R-CNN | [R_50_3x](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml) | 13 FPS | 41.0 | 37.2 |
BlendMask | [R_50_3x](configs/BlendMask/R_50_3x.yaml) | 14 FPS | 42.7 | 37.8 | [model](https://cloudstor.aarnet.edu.au/plus/s/ZnaInHFEKst6mvg/download)
Mask R-CNN | [R_101_3x](https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml) | 10 FPS | 42.9 | 38.6 |
BlendMask | [R_101_3x](configs/BlendMask/R_101_3x.yaml) | 11 FPS | 44.8 | 39.5 | [model](https://cloudstor.aarnet.edu.au/plus/s/e4fXrliAcMtyEBy/download)
BlendMask | [R_101_dcni3_5x](configs/BlendMask/R_101_dcni3_5x.yaml) | 10 FPS | 46.8 | 41.1 | [model](https://cloudstor.aarnet.edu.au/plus/s/vbnKnQtaGlw8TKv/download)

### BlendMask Real-time Models

Model | Name | inf. time | box AP | download
--- |:---:|:---:|:---:|:---:
Mask R-CNN | [550_R_50_3x](configs/RCNN/550_R_50_FPN_3x.yaml) | 16 FPS | 39.1 | 35.3 |
BlendMask | [550_R_50_3x](configs/BlendMask/550_R_50_3x.yaml) | 28 FPS | 38.7 | 34.5 | [model](https://cloudstor.aarnet.edu.au/plus/s/R3Qintf7N8UCiIt/download)
BlendMask | [RT_R_50_4x](configs/BlendMask/RT_R_50_4x.yaml) | 30 FPS | 40.1 | 34.6 | [model](https://cloudstor.aarnet.edu.au/plus/s/fmmciLkyaOoY1Tc/download)
BlendMask | [DLA_34_4x](configs/BlendMask/DLA_34_syncbn_4x.yaml) | 32 FPS | 40.9 | 35.2 | [model](https://cloudstor.aarnet.edu.au/plus/s/Lx94rWNnZ8TRd2Y/download)

# Citing BlendMask
If you use BlendMask in your research or wish to refer to the baseline results, please use the following BibTeX entries.
```BibTeX
@inproceedings{chen2020blendmask,
title = {{BlendMask}: Top-Down Meets Bottom-Up for Instance Segmentation},
author = {Chen, Hao and Sun, Kunyang and Tian, Zhi and Shen, Chunhua and Huang, Yongming and Yan, Youliang},
booktitle = {Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
year = {2020}
}
```

0 comments on commit 628e50d

Please sign in to comment.