Skip to content
/ TJNet Public

Two Guidance Joint Network Based on Coarse Map and Edge Map For Camouflaged Object Detection

Notifications You must be signed in to change notification settings

Huah2019/TJNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

File structure

Dataset
    TrainDataset
    TestDataset
TJNet
    models
        res2net50_v1b_26w_4s-3cf99910.pth -------Backbone network pre-trained model
    net
       Res2Net.py                         
       TJNet.py
    trainpth                              -------The training process files are saved here
    results                               -------The test files are saved here
    utils                                 -------Some tools
    results.txt                           -------Metrics are saved here
    Train.py                              -------Train model
    Test.py                               -------Test model
    Val.py                                -------Get Metrics
    config.ini						      -------Experimental parameter configuration

pre-trained model

Res2Net50: https://shanghuagao.oss-cn-beijing.aliyuncs.com/res2net/res2net50_v1b_26w_4s-3cf99910.pth

TJNet: https://drive.google.com/file/d/1sxLEPsqOlppmCtJ58VegZ2F1jgYfrRU2/view?usp=sharing

Dataset

TrainDataset:https://drive.google.com/file/d/1Kifp7I0n9dlWKXXNIbN7kgyokoRY4Yz7/view?usp=sharing

TestDataset:https://drive.google.com/file/d/1SLRB5Wg1Hdy7CQ74s3mTQ3ChhjFRSFdZ/view?usp=sharing

About

Two Guidance Joint Network Based on Coarse Map and Edge Map For Camouflaged Object Detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published