forked from huningxin/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
145 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
137 changes: 137 additions & 0 deletions
137
onnxruntime/core/providers/webnn/builders/impl/reduction_op_builder.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Copyright (c) Intel Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
|
||
#include "core/providers/common.h" | ||
#include "core/providers/shared/utils/utils.h" | ||
#include "core/providers/webnn/builders/helper.h" | ||
#include "core/providers/webnn/builders/model_builder.h" | ||
#include "core/providers/webnn/builders/op_builder_factory.h" | ||
|
||
#include "core/optimizer/initializer.h" | ||
|
||
#include "base_op_builder.h" | ||
#include "builder_utils.h" | ||
|
||
namespace onnxruntime { | ||
namespace webnn { | ||
|
||
class ReductionOpBuilder : public BaseOpBuilder { | ||
// Add operator related. | ||
public: | ||
void AddInitializersToSkip(ModelBuilder& model_builder, const Node& node) const override; | ||
|
||
// Add operator related. | ||
private: | ||
Status AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node, | ||
const logging::Logger& logger) const override ORT_MUST_USE_RESULT; | ||
|
||
// Operator support related. | ||
private: | ||
bool IsOpSupportedImpl(const InitializedTensorSet& initializers, const Node& node, | ||
const logging::Logger& logger) const override; | ||
}; | ||
|
||
// Add operator related. | ||
void ReductionOpBuilder::AddInitializersToSkip(ModelBuilder& model_builder, const Node& node) const { | ||
const auto& input_defs = node.InputDefs(); | ||
if (input_defs.size() > 1) { | ||
model_builder.AddInitializerToSkip(input_defs[1]->Name()); // axes | ||
} | ||
} | ||
|
||
// Add operator related. | ||
|
||
Status ReductionOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder, | ||
const Node& node, | ||
const logging::Logger& logger) const { | ||
const auto& input_defs = node.InputDefs(); | ||
emscripten::val input = model_builder.GetOperand(input_defs[0]->Name()); | ||
std::vector<int64_t> input_shape; | ||
ORT_RETURN_IF_NOT(GetShape(*input_defs[0], input_shape, logger), "Cannot get shape"); | ||
const auto input_rank = input_shape.size(); | ||
|
||
NodeAttrHelper helper(node); | ||
const auto keep_dims = helper.Get("keepdims", 1); | ||
emscripten::val options = emscripten::val::object(); | ||
options.set("keepDimensions", keep_dims == 1); | ||
std::vector<int32_t> axes_data; | ||
|
||
emscripten::val output = emscripten::val::object(); | ||
|
||
const auto opset = node.SinceVersion(); | ||
if (opset >= 18) { | ||
// Since opset 18, axes is an optional input. | ||
const auto noop_with_empty_axes = helper.Get("noop_with_empty_axes", 0); | ||
if (input_defs.size() > 1) { | ||
// Optional input axes is provided, use axes initializer data. | ||
const auto& initializers(model_builder.GetInitializerTensors()); | ||
const auto& axes_tensor = *initializers.at(input_defs[1]->Name()); | ||
Initializer axes_initializer(axes_tensor); | ||
const auto axes_data_span = axes_initializer.DataAsSpan<int64_t>(); | ||
std::transform( | ||
axes_data_span.begin(), axes_data_span.end(), std::back_inserter(axes_data), | ||
[input_rank](int64_t axis) -> int32_t { return HandleNegativeAxis(axis, input_rank); }); | ||
} else { | ||
if (noop_with_empty_axes) { | ||
// When axes is empty and this attribute is set to true, input tensor will not be reduced. | ||
output = input; | ||
model_builder.AddOperand(node.OutputDefs()[0]->Name(), std::move(output)); | ||
return Status::OK(); | ||
} | ||
} | ||
} else { | ||
if (helper.HasAttr("axes")) { | ||
auto axes = helper.Get("axes", std::vector<int64_t>{}); | ||
std::transform( | ||
axes.begin(), axes.end(), std::back_inserter(axes_data), | ||
[input_rank](int64_t axis) -> int32_t { return HandleNegativeAxis(axis, input_rank); }); | ||
} | ||
} | ||
if (axes_data.size() > 0) { | ||
options.set("axes", emscripten::val::array(axes_data)); | ||
} | ||
|
||
const auto& op_type = node.OpType(); | ||
if (op_type == "ReduceMax") { | ||
output = model_builder.GetBuilder().call<emscripten::val>("reduceMax", input, options); | ||
} else if (op_type == "ReduceMean") { | ||
output = model_builder.GetBuilder().call<emscripten::val>("reduceMean", input, options); | ||
} else { | ||
return ORT_MAKE_STATUS(ONNXRUNTIME, INVALID_ARGUMENT, "ReductionOpBuilder, unknown op: ", op_type); | ||
} | ||
|
||
model_builder.AddOperand(node.OutputDefs()[0]->Name(), std::move(output)); | ||
return Status::OK(); | ||
} | ||
|
||
// Operator support related. | ||
bool ReductionOpBuilder::IsOpSupportedImpl(const InitializedTensorSet& /* initializers */, const Node& node, | ||
const logging::Logger& logger) const { | ||
const auto& input_defs = node.InputDefs(); | ||
|
||
std::vector<int64_t> input_shape; | ||
if (!GetShape(*input_defs[0], input_shape, logger)) | ||
return false; | ||
|
||
return true; | ||
} | ||
|
||
void CreateReductionOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations) { | ||
if (op_registrations.op_builder_map.find(op_type) != op_registrations.op_builder_map.cend()) | ||
return; | ||
|
||
static std::vector<std::string> op_types = | ||
{ | ||
"ReduceMax", | ||
"ReduceMean", | ||
}; | ||
|
||
op_registrations.builders.push_back(std::make_unique<ReductionOpBuilder>()); | ||
for (const auto& type : op_types) { | ||
op_registrations.op_builder_map.emplace(type, op_registrations.builders.back().get()); | ||
} | ||
} | ||
|
||
} // namespace webnn | ||
} // namespace onnxruntime |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters