-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8a3132b
commit 4089a7c
Showing
3 changed files
with
418 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
############################################################ | ||
##### Imports | ||
############################################################ | ||
|
||
|
||
import evaluate | ||
import numpy as np | ||
|
||
from datasets import load_dataset | ||
from transformers import ( | ||
AutoTokenizer, | ||
DataCollatorForSeq2Seq, | ||
AutoModelForSeq2SeqLM, | ||
Seq2SeqTrainingArguments, | ||
Seq2SeqTrainer, | ||
) | ||
|
||
|
||
############################################################ | ||
##### Fine-Tune T5-small Model | ||
############################################################ | ||
|
||
|
||
def preprocess_function(examples): | ||
inputs = [prefix + example[source_lang] for example in examples["translation"]] | ||
targets = [example[target_lang] for example in examples["translation"]] | ||
model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True) | ||
return model_inputs | ||
|
||
|
||
def postprocess_text(preds, labels): | ||
preds = [pred.strip() for pred in preds] | ||
labels = [[label.strip()] for label in labels] | ||
|
||
return preds, labels | ||
|
||
|
||
def compute_metrics(eval_preds): | ||
preds, labels = eval_preds | ||
if isinstance(preds, tuple): | ||
preds = preds[0] | ||
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | ||
|
||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) | ||
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | ||
|
||
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) | ||
|
||
result = metric.compute(predictions=decoded_preds, references=decoded_labels) | ||
result = {"bleu": result["score"]} | ||
|
||
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] | ||
result["gen_len"] = np.mean(prediction_lens) | ||
result = {k: round(v, 4) for k, v in result.items()} | ||
return result | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
checkpoint = "google-t5/t5-small" | ||
|
||
books = load_dataset("opus_books", "de-en") | ||
books = books["train"].train_test_split(test_size=0.2) | ||
|
||
source_lang = "en" | ||
target_lang = "de" | ||
prefix = "Translate English to German: " | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | ||
tokenized_books = books.map(preprocess_function, batched=True) | ||
|
||
training_args = Seq2SeqTrainingArguments( | ||
output_dir="my_awesome_opus_books_model", | ||
evaluation_strategy="epoch", | ||
learning_rate=2e-3, | ||
per_device_train_batch_size=16, | ||
per_device_eval_batch_size=16, | ||
weight_decay=0.01, | ||
save_total_limit=3, | ||
num_train_epochs=10, | ||
predict_with_generate=True, | ||
fp16=True, | ||
push_to_hub=False, | ||
) | ||
|
||
metric = evaluate.load("sacrebleu") | ||
|
||
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint) | ||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) | ||
|
||
trainer = Seq2SeqTrainer( | ||
model=model, | ||
args=training_args, | ||
train_dataset=tokenized_books["train"], | ||
eval_dataset=tokenized_books["test"], | ||
tokenizer=tokenizer, | ||
data_collator=data_collator, | ||
compute_metrics=compute_metrics, | ||
) | ||
|
||
trainer.train() |
Oops, something went wrong.