diff --git a/README.md b/README.md index 9c99ba2..29d3953 100644 --- a/README.md +++ b/README.md @@ -15,75 +15,75 @@

本资源清单包含820个python机器学习相关的开源工具资源,这些热门工具总共分成32个不同的子板块,这些项目目前在github上已经收到3.5M个点赞。所有的工具资源每周会自动从GitHub和工具维护平台采集信息,并更新排行展示。本清单参考[best-of模板](https://github.com/best-of-lists/best-of)完成,内容参考了[awesome-machine-learning](https://github.com/josephmisiti/awesome-machine-learning),欢迎大家提PR丰富本清单。 -## Contents - -- [Machine Learning Frameworks](#machine-learning-frameworks) _54 projects_ -- [Data Visualization](#data-visualization) _49 projects_ -- [Text Data & NLP](#text-data--nlp) _82 projects_ -- [Image Data](#image-data) _49 projects_ -- [Graph Data](#graph-data) _29 projects_ -- [Audio Data](#audio-data) _23 projects_ -- [Geospatial Data](#geospatial-data) _22 projects_ -- [Financial Data](#financial-data) _23 projects_ -- [Time Series Data](#time-series-data) _20 projects_ -- [Medical Data](#medical-data) _19 projects_ -- [Optical Character Recognition](#optical-character-recognition) _11 projects_ -- [Data Containers & Structures](#data-containers--structures) _28 projects_ -- [Data Loading & Extraction](#data-loading--extraction) _23 projects_ -- [Web Scraping & Crawling](#web-scraping--crawling) _1 projects_ -- [Data Pipelines & Streaming](#data-pipelines--streaming) _36 projects_ -- [Distributed Machine Learning](#distributed-machine-learning) _26 projects_ -- [Hyperparameter Optimization & AutoML](#hyperparameter-optimization--automl) _45 projects_ -- [Reinforcement Learning](#reinforcement-learning) _19 projects_ -- [Recommender Systems](#recommender-systems) _13 projects_ -- [Privacy Machine Learning](#privacy-machine-learning) _6 projects_ -- [Workflow & Experiment Tracking](#workflow--experiment-tracking) _35 projects_ -- [Model Serialization & Conversion](#model-serialization--conversion) _11 projects_ -- [Model Interpretability](#model-interpretability) _46 projects_ -- [Vector Similarity Search (ANN)](#vector-similarity-search-ann) _12 projects_ -- [Probabilistics & Statistics](#probabilistics--statistics) _21 projects_ -- [Adversarial Robustness](#adversarial-robustness) _7 projects_ -- [GPU Utilities](#gpu-utilities) _18 projects_ -- [Tensorflow Utilities](#tensorflow-utilities) _13 projects_ -- [Sklearn Utilities](#sklearn-utilities) _17 projects_ -- [Pytorch Utilities](#pytorch-utilities) _27 projects_ -- [Database Clients](#database-clients) _1 projects_ -- [Chinese NLP](#chinese-nlp) _2 projects_ -- [Others](#others) _33 projects_ - -## Explanation -- 🥇🥈🥉  Combined project-quality score -- ⭐️  Star count from GitHub -- 🐣  New project _(less than 6 months old)_ -- 💤  Inactive project _(6 months no activity)_ -- 💀  Dead project _(12 months no activity)_ -- 📈📉  Project is trending up or down -- ➕  Project was recently added -- ❗️  Warning _(e.g. missing/risky license)_ -- 👨‍💻  Contributors count from GitHub -- 🔀  Fork count from GitHub -- 📋  Issue count from GitHub -- ⏱️  Last update timestamp on package manager -- 📥  Download count from package manager -- 📦  Number of dependent projects --   Tensorflow related project --   Sklearn related project --   PyTorch related project --   MxNet related project --   Apache Spark related project --   Jupyter related project --   PaddlePaddle related project --   Pandas related project +## 目录 + +- [机器学习框架](#机器学习框架) _54 个项目_ +- [数据可视化](#数据可视化) _49 个项目_ +- [文本数据和NLP](#文本数据和NLP) _82 个项目_ +- [图像数据与CV](#图像数据与CV) _49 个项目_ +- [图数据处理](#图数据处理) _29 个项目_ +- [音频处理](#音频处理) _23 个项目_ +- [地理Geo处理](#地理Geo处理) _22 个项目_ +- [金融数据处理](#金融数据处理) _23 个项目_ +- [时间序列](#时间序列) _20 个项目_ +- [医疗领域](#医疗领域) _19 个项目_ +- [光学字符识别OCR](#光学字符识别OCR) _11 个项目_ +- [数据容器和结构](#数据容器和结构) _28 个项目_ +- [数据读写与提取](#数据读写与提取) _23 个项目_ +- [网页抓取和爬虫](#网页抓取和爬虫) _1 个项目_ +- [数据管道和流处理](#数据管道和流处理) _36 个项目_ +- [分布式机器学习](#分布式机器学习) _26 个项目_ +- [超参数优化和AutoML](#超参数优化和AutoML) _45 个项目_ +- [强化学习](#强化学习) _19 个项目_ +- [推荐系统](#推荐系统) _13 个项目_ +- [隐私机器学习](#隐私机器学习) _6 个项目_ +- [工作流程和实验跟踪](#工作流程和实验跟踪) _35 个项目_ +- [模型序列化和转换](#模型序列化和转换) _11 个项目_ +- [模型的可解释性](#模型的可解释性) _46 个项目_ +- [向量相似度搜索(ANN)](#向量相似度搜索(ANN)) _12 个项目_ +- [概率统计](#概率统计) _21 个项目_ +- [对抗学习与鲁棒性](#对抗学习与鲁棒性) _7 个项目_ +- [GPU实用程序](#GPU实用程序) _18 个项目_ +- [Tensorflow实用程序](#Tensorflow实用程序) _13 个项目_ +- [Sklearn实用程序](#Sklearn实用程序) _17 个项目_ +- [Pytorch实用程序](#Pytorch实用程序) _27 个项目_ +- [数据库客户端](#数据库客户端) _1 个项目_ +- [中文自然语言处理](#中文自然语言处理) _2 个项目_ +- [Others](#Others) _33 个项目_ + +## 图标解释 +- 🥇🥈🥉  综合项目质量分 +- ⭐️  github上star的数量 +- 🐣  小于6个月的新项目 +- 💤  非活跃项目(6个月未更新) +- 💀  沉寂项目(12个月未更新) +- 📈📉  项目趋势(向上or向下) +- ➕  最近添加的项目 +- ❗️  警告(例如 项目没有license) +- 👨‍💻  项目的开发贡献者数量 +- 🔀  项目被fork的数量 +- 📋  项目issue的数量 +- ⏱️  项目包上次更新时间 +- 📥  工具库被下载次数 +- 📦  项目依赖的工具库数量 +-   Tensorflow相关项目 +-   Sklearn相关项目 +-   pytorch相关项目 +-   MxNet相关项目 +-   Apache Spark相关项目 +-   Jupyter相关项目 +-   PaddlePaddle相关项目 +-   Pandas相关项目
-## Machine Learning Frameworks +## 机器学习框架 -Back to top +Back to top -_General-purpose machine learning and deep learning frameworks._ +_通用机器学习和深度学习框架。_ -
Tensorflow (🥇44 · ⭐ 170K) - An Open Source Machine Learning Framework for Everyone. Apache-2 +
Tensorflow (🥇44 · ⭐ 170K) - 适用于所有人的开源机器学习框架。Apache-2 - [GitHub](https://github.com/tensorflow/tensorflow) (👨‍💻 4.1K · 🔀 70K · 📦 210K · 📋 35K - 5% open · ⏱️ 26.08.2022): @@ -103,7 +103,7 @@ _General-purpose machine learning and deep learning frameworks._ docker pull tensorflow/tensorflow ```
-
scikit-learn (🥇39 · ⭐ 51K) - scikit-learn: machine learning in Python. BSD-3 +
scikit-learn (🥇39 · ⭐ 51K) - scikit-learn:基于Python的机器学习工具库。BSD-3 - [GitHub](https://github.com/scikit-learn/scikit-learn) (👨‍💻 2.7K · 🔀 23K · 📥 810 · 📦 390K · 📋 9.6K - 16% open · ⏱️ 26.08.2022): @@ -119,7 +119,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge scikit-learn ```
-
XGBoost (🥇37 · ⭐ 23K) - Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or.. Apache-2 +
XGBoost (🥇37 · ⭐ 23K) - 可扩展,高效和分布式梯度增强(GBDT,GBRT等)的boosting工具库。Apache-2 - [GitHub](https://github.com/dmlc/xgboost) (👨‍💻 570 · 🔀 7.9K · 📥 5K · 📦 35K · 📋 4.5K - 5% open · ⏱️ 25.08.2022): @@ -135,7 +135,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge xgboost ```
-
LightGBM (🥇35 · ⭐ 14K) - A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT,.. MIT +
LightGBM (🥇35 · ⭐ 14K) - 快速,分布式,高性能梯度提升(GBT,GBDT,GBRT等)的boosting工具库。MIT - [GitHub](https://github.com/microsoft/LightGBM) (👨‍💻 270 · 🔀 3.5K · 📥 160K · 📦 15K · 📋 2.8K - 7% open · ⏱️ 25.08.2022): @@ -151,7 +151,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge lightgbm ```
-
Fastai (🥇34 · ⭐ 23K) - The fastai deep learning library. Apache-2 +
Fastai (🥇34 · ⭐ 23K) - Fastai深度学习库。Apache-2 - [GitHub](https://github.com/fastai/fastai) (👨‍💻 210 · 🔀 7.1K · 📦 11K · 📋 1.7K - 6% open · ⏱️ 19.08.2022): @@ -163,7 +163,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install fastai ```
-
Thinc (🥇34 · ⭐ 2.6K) - A refreshing functional take on deep learning, compatible with your favorite.. MIT +
Thinc (🥇34 · ⭐ 2.6K) - 深度学习工具库。MIT - [GitHub](https://github.com/explosion/thinc) (👨‍💻 53 · 🔀 240 · 📦 23K · 📋 120 - 11% open · ⏱️ 05.08.2022): @@ -179,7 +179,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge thinc ```
-
PyTorch (🥈33 · ⭐ 58K) - Tensors and Dynamic neural networks in Python with strong GPU.. BSD-3 +
PyTorch (🥈33 · ⭐ 58K) - 具有强大GPU的Python中的张量和动态神经网络构建工具库。BSD-3 - [GitHub](https://github.com/pytorch/pytorch) (👨‍💻 3.5K · 🔀 16K · 📥 5.6K · 📋 28K - 32% open · ⏱️ 26.08.2022): @@ -195,7 +195,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c pytorch pytorch ```
-
dlib (🥈33 · ⭐ 11K) - A toolkit for making real world machine learning and data analysis.. ❗️BSL-1.0 +
dlib (🥈33 · ⭐ 11K) - 进行现实世界机器学习和数据分析的工具包。❗️BSL-1.0 - [GitHub](https://github.com/davisking/dlib) (👨‍💻 180 · 🔀 2.7K · 📥 25K · 📦 16K · 📋 2.1K - 1% open · ⏱️ 26.08.2022): @@ -211,7 +211,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge dlib ```
-
Keras (🥈32 · ⭐ 56K) - Deep Learning for humans. Apache-2 +
Keras (🥈32 · ⭐ 56K) - 易上手的深度学习工具库。Apache-2 - [GitHub](https://github.com/keras-team/keras) (👨‍💻 1.1K · 🔀 18K · 📋 11K - 2% open · ⏱️ 26.08.2022): @@ -227,7 +227,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge keras ```
-
PySpark (🥈32 · ⭐ 34K) - Apache Spark Python API. Apache-2 +
PySpark (🥈32 · ⭐ 34K) - Apache Spark Python API。Apache-2 - [GitHub](https://github.com/apache/spark) (👨‍💻 2.7K · 🔀 25K · ⏱️ 26.08.2022): @@ -243,7 +243,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge pyspark ```
-
PaddlePaddle (🥈32 · ⭐ 19K) - PArallel Distributed Deep LEarning: Machine Learning.. Apache-2 +
PaddlePaddle (🥈32 · ⭐ 19K) - paddlepaddle机器学习与深度学习工具库。Apache-2 - [GitHub](https://github.com/PaddlePaddle/Paddle) (👨‍💻 810 · 🔀 4.5K · 📥 15K · 📦 140 · 📋 15K - 14% open · ⏱️ 26.08.2022): @@ -255,7 +255,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install paddlepaddle ```
-
Jina (🥈32 · ⭐ 16K) - An easier way to build neural search on the cloud. Apache-2 +
Jina (🥈32 · ⭐ 16K) - 在云端构建神经搜索的简便方法库。Apache-2 - [GitHub](https://github.com/jina-ai/jina) (👨‍💻 150 · 🔀 1.9K · 📦 350 · 📋 1.6K - 1% open · ⏱️ 25.08.2022): @@ -271,7 +271,7 @@ _General-purpose machine learning and deep learning frameworks._ docker pull jinaai/jina ```
-
StatsModels (🥈32 · ⭐ 7.7K) - Statsmodels: statistical modeling and econometrics in Python. BSD-3 +
StatsModels (🥈32 · ⭐ 7.7K) - Statsmodels:Python中的统计建模和计量经济学工具库。BSD-3 - [GitHub](https://github.com/statsmodels/statsmodels) (👨‍💻 380 · 🔀 2.4K · 📥 26 · 📦 68K · 📋 4.8K - 46% open · ⏱️ 23.08.2022): @@ -287,7 +287,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge statsmodels ```
-
jax (🥈31 · ⭐ 20K) - Composable transformations of Python+NumPy programs: differentiate,.. Apache-2 +
jax (🥈31 · ⭐ 20K) - Python + NumPy程序工具库。Apache-2 - [GitHub](https://github.com/google/jax) (👨‍💻 440 · 🔀 1.8K · 📦 5.3K · 📋 3.4K - 24% open · ⏱️ 26.08.2022): @@ -303,7 +303,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge jaxlib ```
-
Chainer (🥈31 · ⭐ 5.7K) - A flexible framework of neural networks for deep learning. MIT +
Chainer (🥈31 · ⭐ 5.7K) - 灵活的深度学习神经网络框架。MIT - [GitHub](https://github.com/chainer/chainer) (👨‍💻 320 · 🔀 1.3K · 📦 2.7K · 📋 2K - 0% open · ⏱️ 29.06.2022): @@ -315,7 +315,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install chainer ```
-
Theano (🥈30 · ⭐ 9.6K · 💤) - Theano is a Python library that allows you to define,.. ❗Unlicensed +
Theano (🥈30 · ⭐ 9.6K · 💤) - Theano是一个Python神经网络工具库。❗Unlicensed - [GitHub](https://github.com/Theano/Theano) (👨‍💻 380 · 🔀 2.4K · 📦 13K · 📋 2.7K - 21% open · ⏱️ 23.11.2021): @@ -331,7 +331,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge theano ```
-
einops (🥈30 · ⭐ 5.5K) - Deep learning operations reinvented (for pytorch, tensorflow, jax and.. MIT +
einops (🥈30 · ⭐ 5.5K) - 重塑了深度学习操作(用于pytorch,tensorflow,jax等)的工具库。MIT - [GitHub](https://github.com/arogozhnikov/einops) (👨‍💻 20 · 🔀 240 · 📦 3.9K · 📋 120 - 28% open · ⏱️ 24.08.2022): @@ -347,7 +347,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge einops ```
-
MXNet (🥈29 · ⭐ 20K) - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning.. Apache-2 +
MXNet (🥈29 · ⭐ 20K) - 轻巧,灵活的分布式/移动深度学习工具库。Apache-2 - [GitHub](https://github.com/apache/incubator-mxnet) (👨‍💻 980 · 🔀 6.5K · 📥 25K · 📋 9.5K - 18% open · ⏱️ 23.08.2022): @@ -363,7 +363,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c anaconda mxnet ```
-
pytorch-lightning (🥈29 · ⭐ 20K · 📉) - The lightweight PyTorch wrapper for high-performance.. Apache-2 +
pytorch-lightning (🥈29 · ⭐ 20K · 📉) - 轻巧而具备高性能的PyTorch上层封装工具库。Apache-2 - [GitHub](https://github.com/Lightning-AI/lightning) (👨‍💻 740 · 🔀 2.5K · 📥 8K · 📋 5.3K - 8% open · ⏱️ 25.08.2022): @@ -379,7 +379,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge pytorch-lightning ```
-
Vowpal Wabbit (🥈28 · ⭐ 8K) - Vowpal Wabbit is a machine learning system which pushes the.. BSD-3 +
Vowpal Wabbit (🥈28 · ⭐ 8K) - Vowpal Wabbit是一个推动机器学习的机器学习系统。BSD-3 - [GitHub](https://github.com/VowpalWabbit/vowpal_wabbit) (👨‍💻 320 · 🔀 1.7K · 📋 1.2K - 10% open · ⏱️ 25.08.2022): @@ -391,7 +391,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install vowpalwabbit ```
-
Catboost (🥈28 · ⭐ 6.7K) - A fast, scalable, high performance Gradient Boosting on Decision.. Apache-2 +
Catboost (🥈28 · ⭐ 6.7K) - 快速,可扩展,高性能的梯度决策提升工具库。Apache-2 - [GitHub](https://github.com/catboost/catboost) (👨‍💻 1K · 🔀 990 · 📥 86K · 📋 1.9K - 21% open · ⏱️ 21.08.2022): @@ -407,7 +407,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge catboost ```
-
Flax (🥈28 · ⭐ 3.5K) - Flax is a neural network library for JAX that is designed for.. Apache-2 jax +
Flax (🥈28 · ⭐ 3.5K) - Flax是专为.NET设计的用于JAX的神经网络库。Apache-2 jax - [GitHub](https://github.com/google/flax) (👨‍💻 170 · 🔀 380 · 📥 42 · 📦 1.3K · 📋 550 - 17% open · ⏱️ 25.08.2022): @@ -419,7 +419,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install flax ```
-
dyNET (🥈28 · ⭐ 3.3K) - DyNet: The Dynamic Neural Network Toolkit. Apache-2 +
dyNET (🥈28 · ⭐ 3.3K) - DyNet:动态神经网络工具包。Apache-2 - [GitHub](https://github.com/clab/dynet) (👨‍💻 160 · 🔀 670 · 📥 6.9K · 📦 220 · 📋 920 - 27% open · ⏱️ 14.08.2022): @@ -431,7 +431,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install dyNET ```
-
PyFlink (🥉27 · ⭐ 20K) - Apache Flink Python API. Apache-2 +
PyFlink (🥉27 · ⭐ 20K) - Apache Flink Python API。Apache-2 - [GitHub](https://github.com/apache/flink) (👨‍💻 1.6K · 🔀 11K · ⏱️ 26.08.2022): @@ -443,7 +443,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install apache-flink ```
-
TFlearn (🥉27 · ⭐ 9.6K · 💀) - Deep learning library featuring a higher-level API for.. ❗Unlicensed +
TFlearn (🥉27 · ⭐ 9.6K · 💀) - 深度学习库,基于TensorFlow构建上层简单易用的API。❗Unlicensed - [GitHub](https://github.com/tflearn/tflearn) (👨‍💻 130 · 🔀 2.3K · 📦 4.1K · 📋 910 - 60% open · ⏱️ 30.11.2020): @@ -455,7 +455,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install tflearn ```
-
Sonnet (🥉27 · ⭐ 9.4K) - TensorFlow-based neural network library. Apache-2 +
Sonnet (🥉27 · ⭐ 9.4K) - 基于TensorFlow的神经网络库。Apache-2 - [GitHub](https://github.com/deepmind/sonnet) (👨‍💻 54 · 🔀 1.2K · 📦 900 · 📋 180 - 14% open · ⏱️ 23.08.2022): @@ -471,7 +471,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge sonnet ```
-
Ludwig (🥉27 · ⭐ 8.5K) - Ludwig is a toolbox that allows to train and evaluate deep.. Apache-2 +
Ludwig (🥉27 · ⭐ 8.5K) - 路德维希(Ludwig)是一个工具箱,可用于深度学习训练和评估。Apache-2 - [GitHub](https://github.com/ludwig-ai/ludwig) (👨‍💻 130 · 🔀 960 · 📦 130 · 📋 820 - 23% open · ⏱️ 25.08.2022): @@ -483,7 +483,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install ludwig ```
-
tensorpack (🥉27 · ⭐ 6.2K) - A Neural Net Training Interface on TensorFlow, with focus.. Apache-2 +
tensorpack (🥉27 · ⭐ 6.2K) - TensorFlow上的神经网络训练接口。Apache-2 - [GitHub](https://github.com/tensorpack/tensorpack) (👨‍💻 58 · 🔀 1.8K · 📥 140 · 📦 1.1K · 📋 1.3K - 0% open · ⏱️ 04.05.2022): @@ -495,7 +495,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install tensorpack ```
-
skorch (🥉26 · ⭐ 4.6K) - A scikit-learn compatible neural network library that wraps.. BSD-3 +
skorch (🥉26 · ⭐ 4.6K) - 封装成scikit-learn接口模式的神经网络库。BSD-3 - [GitHub](https://github.com/skorch-dev/skorch) (👨‍💻 50 · 🔀 310 · 📦 550 · 📋 440 - 9% open · ⏱️ 22.08.2022): @@ -511,7 +511,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge skorch ```
-
Ignite (🥉26 · ⭐ 4K) - High-level library to help with training and evaluating neural.. BSD-3 +
Ignite (🥉26 · ⭐ 4K) - 用于训练和评估神经等一系列操作的高级深度学习工具库。BSD-3 - [GitHub](https://github.com/pytorch/ignite) (👨‍💻 180 · 🔀 540 · 📋 1.1K - 10% open · ⏱️ 25.08.2022): @@ -527,7 +527,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c pytorch ignite ```
-
ktrain (🥉26 · ⭐ 1K) - ktrain is a Python library that makes deep learning and AI more.. Apache-2 +
ktrain (🥉26 · ⭐ 1K) - ktrain是一个Python库,可以使深度学习和AI更简单。Apache-2 - [GitHub](https://github.com/amaiya/ktrain) (👨‍💻 15 · 🔀 240 · 📦 330 · 📋 420 - 0% open · ⏱️ 04.08.2022): @@ -539,7 +539,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install ktrain ```
-
Turi Create (🥉25 · ⭐ 11K · 💤) - Turi Create simplifies the development of custom machine.. BSD-3 +
Turi Create (🥉25 · ⭐ 11K · 💤) - Turi Create简化了自定义机器学习的开发。BSD-3 - [GitHub](https://github.com/apple/turicreate) (👨‍💻 85 · 🔀 1.1K · 📥 6.8K · 📦 320 · 📋 1.8K - 27% open · ⏱️ 29.11.2021): @@ -551,7 +551,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install turicreate ```
-
xLearn (🥉25 · ⭐ 3K) - High performance, easy-to-use, and scalable machine learning (ML).. Apache-2 +
xLearn (🥉25 · ⭐ 3K) - 高性能,易于使用且可扩展的机器学习(ML)工具库。Apache-2 - [GitHub](https://github.com/aksnzhy/xlearn) (👨‍💻 30 · 🔀 510 · 📥 3.4K · 📦 93 · 📋 300 - 61% open · ⏱️ 05.06.2022): @@ -563,7 +563,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install xlearn ```
-
NuPIC (🥉24 · ⭐ 6.3K · 💀) - Numenta Platform for Intelligent Computing is an implementation.. ❗️AGPL-3.0 +
NuPIC (🥉24 · ⭐ 6.3K · 💀) - Numenta智能计算平台。❗️AGPL-3.0 - [GitHub](https://github.com/numenta/nupic) (👨‍💻 120 · 🔀 1.6K · 📦 110 · 📋 1.8K - 25% open · ⏱️ 23.10.2019): @@ -575,7 +575,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install nupic ```
-
fklearn (🥉24 · ⭐ 1.4K) - fklearn: Functional Machine Learning. Apache-2 +
fklearn (🥉24 · ⭐ 1.4K) - fklearn:机器学习工具库。Apache-2 - [GitHub](https://github.com/nubank/fklearn) (👨‍💻 47 · 🔀 160 · 📦 13 · 📋 48 - 54% open · ⏱️ 25.08.2022): @@ -587,7 +587,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install fklearn ```
-
tensorflow-upstream (🥉24 · ⭐ 610) - TensorFlow ROCm port. Apache-2 +
tensorflow-upstream (🥉24 · ⭐ 610) - TensorFlow ROCm端口。Apache-2 - [GitHub](https://github.com/ROCmSoftwarePlatform/tensorflow-upstream) (👨‍💻 4.1K · 🔀 71 · 📥 20 · 📋 330 - 16% open · ⏱️ 23.08.2022): @@ -599,7 +599,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install tensorflow-rocm ```
-
mlpack (🥉23 · ⭐ 4.1K) - mlpack: a scalable C++ machine learning library --. ❗Unlicensed +
mlpack (🥉23 · ⭐ 4.1K) - mlpack:可扩展的C++机器学习库-。❗Unlicensed - [GitHub](https://github.com/mlpack/mlpack) (👨‍💻 290 · 🔀 1.4K · 📋 1.4K - 2% open · ⏱️ 18.08.2022): @@ -615,7 +615,7 @@ _General-purpose machine learning and deep learning frameworks._ conda install -c conda-forge mlpack ```
-
Neural Network Libraries (🥉23 · ⭐ 2.6K) - Neural Network Libraries. Apache-2 +
Neural Network Libraries (🥉23 · ⭐ 2.6K) - 神经网络工具库。Apache-2 - [GitHub](https://github.com/sony/nnabla) (👨‍💻 67 · 🔀 310 · 📥 540 · 📋 72 - 31% open · ⏱️ 25.08.2022): @@ -627,7 +627,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install nnabla ```
-
Neural Tangents (🥉23 · ⭐ 1.8K) - Fast and Easy Infinite Neural Networks in Python. Apache-2 +
Neural Tangents (🥉23 · ⭐ 1.8K) - Python中的快速简便的无限神经网络。Apache-2 - [GitHub](https://github.com/google/neural-tangents) (👨‍💻 23 · 🔀 200 · 📥 240 · 📦 47 · 📋 120 - 34% open · ⏱️ 19.08.2022): @@ -639,7 +639,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install neural-tangents ```
-
CNTK (🥉22 · ⭐ 17K · 💀) - Microsoft Cognitive Toolkit (CNTK), an open source deep-learning.. ❗Unlicensed +
CNTK (🥉22 · ⭐ 17K · 💀) - Microsoft认知工具包(CNTK),一种开源的深度学习工具包。❗Unlicensed - [GitHub](https://github.com/microsoft/CNTK) (👨‍💻 270 · 🔀 4.3K · 📥 14K · 📋 3.3K - 22% open · ⏱️ 31.03.2020): @@ -651,7 +651,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install cntk ```
-
Lasagne (🥉22 · ⭐ 3.8K · 💀) - Lightweight library to build and train neural networks in.. ❗Unlicensed +
Lasagne (🥉22 · ⭐ 3.8K · 💀) - 轻量级的库,用于在Theano中构建和训练神经网络。❗Unlicensed - [GitHub](https://github.com/Lasagne/Lasagne) (👨‍💻 72 · 🔀 930 · 📦 920 · 📋 520 - 22% open · ⏱️ 20.11.2019): @@ -663,7 +663,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install lasagne ```
-
SHOGUN (🥉22 · ⭐ 2.9K · 💀) - Unified and efficient Machine Learning. BSD-3 +
SHOGUN (🥉22 · ⭐ 2.9K · 💀) - 统一高效的机器学习。BSD-3 - [GitHub](https://github.com/shogun-toolbox/shogun) (👨‍💻 250 · 🔀 1K · 📋 1.5K - 27% open · ⏱️ 08.12.2020): @@ -679,7 +679,7 @@ _General-purpose machine learning and deep learning frameworks._ docker pull shogun/shogun ```
-
NeuPy (🥉22 · ⭐ 710 · 💀) - NeuPy is a Tensorflow based python library for prototyping and building.. MIT +
NeuPy (🥉22 · ⭐ 710 · 💀) - NeuPy是一个基于Tensorflow的python库,用于原型设计和构建。MIT - [GitHub](https://github.com/itdxer/neupy) (👨‍💻 7 · 🔀 150 · 📦 130 · 📋 270 - 12% open · ⏱️ 02.09.2019): @@ -691,7 +691,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install neupy ```
-
Haiku (🥉21 · ⭐ 2.1K) - JAX-based neural network library. Apache-2 +
Haiku (🥉21 · ⭐ 2.1K) - 基于JAX的神经网络库。Apache-2 - [GitHub](https://github.com/deepmind/dm-haiku) (👨‍💻 63 · 🔀 170 · 📦 540 · 📋 180 - 26% open · ⏱️ 25.08.2022): @@ -699,7 +699,7 @@ _General-purpose machine learning and deep learning frameworks._ git clone https://github.com/deepmind/dm-haiku ```
-
mace (🥉20 · ⭐ 4.7K) - MACE is a deep learning inference framework optimized for mobile.. Apache-2 +
mace (🥉20 · ⭐ 4.7K) - MACE是针对移动设备优化的深度学习推理框架。Apache-2 - [GitHub](https://github.com/XiaoMi/mace) (👨‍💻 64 · 🔀 790 · 📥 1.4K · 📋 660 - 7% open · ⏱️ 30.05.2022): @@ -707,7 +707,7 @@ _General-purpose machine learning and deep learning frameworks._ git clone https://github.com/XiaoMi/mace ```
-
Objax (🥉20 · ⭐ 720) - Objax is a machine learning framework that provides an Object.. Apache-2 jax +
Objax (🥉20 · ⭐ 720) - Objax是加速研究与应用的开源深度学习框架。Apache-2 jax - [GitHub](https://github.com/google/objax) (👨‍💻 23 · 🔀 60 · 📦 25 · 📋 98 - 38% open · ⏱️ 12.07.2022): @@ -719,7 +719,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install objax ```
-
MindsDB (🥉19 · ⭐ 9.7K) - Predictive AI layer for existing databases. ❗️GPL-3.0 +
MindsDB (🥉19 · ⭐ 9.7K) - 为各种现有数据库提供预测性AI层。❗️GPL-3.0 - [GitHub](https://github.com/mindsdb/mindsdb) (👨‍💻 130 · 🔀 1K · 📋 1.2K - 11% open · ⏱️ 25.08.2022): @@ -731,7 +731,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install mindsdb ```
-
neon (🥉19 · ⭐ 3.9K · 💀) - Intel Nervana reference deep learning framework committed to best.. Apache-2 +
neon (🥉19 · ⭐ 3.9K · 💀) - 英特尔Nervana深度学习框架。Apache-2 - [GitHub](https://github.com/NervanaSystems/neon) (👨‍💻 110 · 🔀 800 · 📥 340 · 📋 390 - 21% open · ⏱️ 22.05.2019): @@ -743,7 +743,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install nervananeon ```
-
ThunderSVM (🥉19 · ⭐ 1.4K) - ThunderSVM: A Fast SVM Library on GPUs and CPUs. Apache-2 +
ThunderSVM (🥉19 · ⭐ 1.4K) - ThunderSVM:在GPU和CPU上的快速SVM库。Apache-2 - [GitHub](https://github.com/Xtra-Computing/thundersvm) (👨‍💻 34 · 🔀 190 · 📥 2.5K · 📋 210 - 29% open · ⏱️ 09.04.2022): @@ -755,7 +755,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install thundersvm ```
-
Torchbearer (🥉19 · ⭐ 630 · 💀) - torchbearer: A model fitting library for PyTorch. MIT +
Torchbearer (🥉19 · ⭐ 630 · 💀) - torchbearer:PyTorch的模型拟合库。MIT - [GitHub](https://github.com/pytorchbearer/torchbearer) (👨‍💻 13 · 🔀 66 · 📦 64 · 📋 250 - 4% open · ⏱️ 26.03.2021): @@ -767,7 +767,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install torchbearer ```
-
elegy (🥉18 · ⭐ 400) - Elegy is a framework-agnostic Trainer interface for the Jax.. MIT jax +
elegy (🥉18 · ⭐ 400) - Elegy是Jax的与框架无关的Trainer工具。MIT jax - [GitHub](https://github.com/poets-ai/elegy) (👨‍💻 17 · 🔀 26 · 📋 100 - 34% open · ⏱️ 23.05.2022): @@ -779,7 +779,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install elegy ```
-
ThunderGBM (🥉17 · ⭐ 640) - ThunderGBM: Fast GBDTs and Random Forests on GPUs. Apache-2 +
ThunderGBM (🥉17 · ⭐ 640) - ThunderGBM:GPU上的快速GBDT和随机森林。Apache-2 - [GitHub](https://github.com/Xtra-Computing/thundergbm) (👨‍💻 10 · 🔀 82 · 📋 74 - 50% open · ⏱️ 09.08.2022): @@ -791,7 +791,7 @@ _General-purpose machine learning and deep learning frameworks._ pip install thundergbm ```
-
NeoML (🥉15 · ⭐ 690) - Machine learning framework for both deep learning and traditional.. Apache-2 +
NeoML (🥉15 · ⭐ 690) - neoml是可以用于深度学习和传统机器学习的工具库。Apache-2 - [GitHub](https://github.com/neoml-lib/neoml) (👨‍💻 32 · 🔀 110 · 📋 62 - 22% open · ⏱️ 24.08.2022): @@ -799,7 +799,7 @@ _General-purpose machine learning and deep learning frameworks._ git clone https://github.com/neoml-lib/neoml ```
-
StarSpace (🥉12 · ⭐ 3.8K · 💀) - Learning embeddings for classification, retrieval and ranking. MIT +
StarSpace (🥉12 · ⭐ 3.8K · 💀) - 学习embedding嵌入用于分类,检索和排序。MIT - [GitHub](https://github.com/facebookresearch/StarSpace) (👨‍💻 17 · 🔀 510 · 📋 200 - 24% open · ⏱️ 13.12.2019): @@ -809,13 +809,13 @@ _General-purpose machine learning and deep learning frameworks._

-## Data Visualization +## 数据可视化 -Back to top +Back to top -_General-purpose and task-specific data visualization libraries._ +_通用和特定于任务的数据可视化库。_ -
Matplotlib (🥇36 · ⭐ 16K) - matplotlib: plotting with Python. ❗Unlicensed +
Matplotlib (🥇36 · ⭐ 16K) - matplotlib:Python绘图工具库。❗Unlicensed - [GitHub](https://github.com/matplotlib/matplotlib) (👨‍💻 1.4K · 🔀 6.3K · 📦 610K · 📋 8.8K - 17% open · ⏱️ 26.08.2022): @@ -831,7 +831,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge matplotlib ```
-
pandas-profiling (🥇33 · ⭐ 9.4K) - Create HTML profiling reports from pandas DataFrame.. MIT +
pandas-profiling (🥇33 · ⭐ 9.4K) - 从pandas DataFrame创建HTML分析报告。MIT - [GitHub](https://github.com/ydataai/pandas-profiling) (👨‍💻 92 · 🔀 1.3K · 📦 8.8K · 📋 580 - 19% open · ⏱️ 25.08.2022): @@ -847,7 +847,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge pandas-profiling ```
-
Altair (🥇33 · ⭐ 7.7K) - Declarative statistical visualization library for Python. BSD-3 +
Altair (🥇33 · ⭐ 7.7K) - 用于Python的声明式统计可视化库。BSD-3 - [GitHub](https://github.com/altair-viz/altair) (👨‍💻 140 · 🔀 650 · 📦 32K · 📋 1.6K - 13% open · ⏱️ 23.08.2022): @@ -863,7 +863,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge altair ```
-
dash (🥇32 · ⭐ 17K) - Analytical Web Apps for Python, R, Julia, and Jupyter. No JavaScript.. MIT +
dash (🥇32 · ⭐ 17K) - 适用于Python,R,Julia和Jupyter的分析型Web应用程序。MIT - [GitHub](https://github.com/plotly/dash) (👨‍💻 120 · 🔀 1.7K · 📦 220 · 📋 1.3K - 47% open · ⏱️ 19.08.2022): @@ -879,7 +879,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge dash ```
-
Plotly (🥇32 · ⭐ 12K) - The interactive graphing library for Python (includes Plotly Express). MIT +
Plotly (🥇32 · ⭐ 12K) - 适用于Python的交互式图形库(包括Plotly Express)。MIT - [GitHub](https://github.com/plotly/plotly.py) (👨‍💻 200 · 🔀 2.1K · 📦 12 · 📋 2.4K - 49% open · ⏱️ 11.08.2022): @@ -899,7 +899,7 @@ _General-purpose and task-specific data visualization libraries._ npm install plotlywidget ```
-
UMAP (🥇32 · ⭐ 5.7K) - Uniform Manifold Approximation and Projection. BSD-3 +
UMAP (🥇32 · ⭐ 5.7K) - 均匀流形逼近和投影。BSD-3 - [GitHub](https://github.com/lmcinnes/umap) (👨‍💻 100 · 🔀 630 · 📦 6K · 📋 640 - 52% open · ⏱️ 23.08.2022): @@ -911,7 +911,7 @@ _General-purpose and task-specific data visualization libraries._ pip install umap-learn ```
-
Graphviz (🥈30 · ⭐ 1.3K) - Simple Python interface for Graphviz. MIT +
Graphviz (🥈30 · ⭐ 1.3K) - Graphviz的简单Python界面。MIT - [GitHub](https://github.com/xflr6/graphviz) (👨‍💻 19 · 🔀 180 · 📦 34K · 📋 140 - 4% open · ⏱️ 27.07.2022): @@ -923,7 +923,7 @@ _General-purpose and task-specific data visualization libraries._ pip install graphviz ```
-
Seaborn (🥈29 · ⭐ 9.7K · 📉) - Statistical data visualization using matplotlib. BSD-3 +
Seaborn (🥈29 · ⭐ 9.7K · 📉) - 使用matplotlib进行统计数据可视化。BSD-3 - [GitHub](https://github.com/mwaskom/seaborn) (👨‍💻 170 · 🔀 1.6K · 📥 230 · 📋 2.1K - 4% open · ⏱️ 26.08.2022): @@ -939,7 +939,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge seaborn ```
-
datashader (🥈29 · ⭐ 2.8K) - Quickly and accurately render even the largest data. BSD-3 +
datashader (🥈29 · ⭐ 2.8K) - 快速准确地渲染大数据。BSD-3 - [GitHub](https://github.com/holoviz/datashader) (👨‍💻 49 · 🔀 340 · 📦 1.3K · 📋 500 - 23% open · ⏱️ 10.08.2022): @@ -955,7 +955,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge datashader ```
-
Bokeh (🥈28 · ⭐ 17K) - Interactive Data Visualization in the browser, from Python. BSD-3 +
Bokeh (🥈28 · ⭐ 17K) - 浏览器中的Python交互式数据可视化。BSD-3 - [GitHub](https://github.com/bokeh/bokeh) (👨‍💻 610 · 🔀 3.9K · 📦 150 · 📋 7K - 9% open · ⏱️ 24.08.2022): @@ -971,7 +971,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge bokeh ```
-
pyecharts (🥈28 · ⭐ 13K) - Python Echarts Plotting Library. MIT +
pyecharts (🥈28 · ⭐ 13K) - Python Echarts绘图库。MIT - [GitHub](https://github.com/pyecharts/pyecharts) (👨‍💻 30 · 🔀 2.7K · 📦 2.4K · 📋 1.6K - 1% open · ⏱️ 25.04.2022): @@ -983,7 +983,7 @@ _General-purpose and task-specific data visualization libraries._ pip install pyecharts ```
-
missingno (🥈28 · ⭐ 3.3K) - Missing data visualization module for Python. MIT +
missingno (🥈28 · ⭐ 3.3K) - 在缺失值和混乱数据下,用于数据可视化的python模块。MIT - [GitHub](https://github.com/ResidentMario/missingno) (👨‍💻 17 · 🔀 410 · 📦 8.3K · 📋 120 - 6% open · ⏱️ 27.02.2022): @@ -999,7 +999,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge missingno ```
-
D-Tale (🥈27 · ⭐ 3.6K) - Visualizer for pandas data structures. ❗️LGPL-2.1 +
D-Tale (🥈27 · ⭐ 3.6K) - pandas数据结构的可视化工具。❗️LGPL-2.1 - [GitHub](https://github.com/man-group/dtale) (👨‍💻 27 · 🔀 290 · 📦 460 · 📋 470 - 8% open · ⏱️ 07.08.2022): @@ -1015,7 +1015,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge dtale ```
-
bqplot (🥈27 · ⭐ 3.3K) - Plotting library for IPython/Jupyter notebooks. Apache-2 +
bqplot (🥈27 · ⭐ 3.3K) - 用于IPython / Jupyter笔记本的绘图库。Apache-2 - [GitHub](https://github.com/bqplot/bqplot) (👨‍💻 59 · 🔀 440 · 📦 34 · 📋 570 - 36% open · ⏱️ 22.08.2022): @@ -1035,7 +1035,7 @@ _General-purpose and task-specific data visualization libraries._ npm install bqplot ```
-
data-validation (🥈27 · ⭐ 660) - Library for exploring and validating machine learning.. Apache-2 +
data-validation (🥈27 · ⭐ 660) - 用于探索和验证机器学习的库。Apache-2 - [GitHub](https://github.com/tensorflow/data-validation) (👨‍💻 24 · 🔀 130 · 📥 370 · 📦 540 · 📋 150 - 16% open · ⏱️ 24.08.2022): @@ -1047,7 +1047,7 @@ _General-purpose and task-specific data visualization libraries._ pip install tensorflow-data-validation ```
-
hvPlot (🥈27 · ⭐ 620) - A high-level plotting API for pandas, dask, xarray, and networkx built on.. BSD-3 +
hvPlot (🥈27 · ⭐ 620) - 用于构建的pandas,dask,xarray和networkx的高级绘图API。BSD-3 - [GitHub](https://github.com/holoviz/hvplot) (👨‍💻 37 · 🔀 73 · 📦 1.6K · 📋 480 - 37% open · ⏱️ 25.08.2022): @@ -1063,7 +1063,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge hvplot ```
-
wordcloud (🥈26 · ⭐ 8.9K) - A little word cloud generator in Python. MIT +
wordcloud (🥈26 · ⭐ 8.9K) - Python中的词云生成器。MIT - [GitHub](https://github.com/amueller/word_cloud) (👨‍💻 65 · 🔀 2.2K · 📋 470 - 20% open · ⏱️ 27.06.2022): @@ -1079,7 +1079,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge wordcloud ```
-
Cufflinks (🥈26 · ⭐ 2.6K · 💀) - Productivity Tools for Plotly + Pandas. MIT +
Cufflinks (🥈26 · ⭐ 2.6K · 💀) - Plotly + Pandas的生产力工具。MIT - [GitHub](https://github.com/santosjorge/cufflinks) (👨‍💻 38 · 🔀 600 · 📦 6.5K · 📋 210 - 41% open · ⏱️ 25.02.2021): @@ -1091,7 +1091,7 @@ _General-purpose and task-specific data visualization libraries._ pip install cufflinks ```
-
HoloViews (🥈26 · ⭐ 2.3K) - With Holoviews, your data visualizes itself. BSD-3 +
HoloViews (🥈26 · ⭐ 2.3K) - 使用Holoviews,您的数据可以可视化。BSD-3 - [GitHub](https://github.com/holoviz/holoviews) (👨‍💻 120 · 🔀 350 · 📋 2.8K - 31% open · ⏱️ 22.08.2022): @@ -1111,7 +1111,7 @@ _General-purpose and task-specific data visualization libraries._ npm install @pyviz/jupyterlab_pyviz ```
-
PyVista (🥈26 · ⭐ 1.4K) - 3D plotting and mesh analysis through a streamlined interface for.. MIT +
PyVista (🥈26 · ⭐ 1.4K) - 通过简化的界面进行3D绘图和网格分析。MIT - [GitHub](https://github.com/pyvista/pyvista) (👨‍💻 100 · 🔀 280 · 📥 660 · 📦 900 · 📋 920 - 28% open · ⏱️ 26.08.2022): @@ -1127,7 +1127,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge pyvista ```
-
Facets Overview (🥉25 · ⭐ 7K · 💀) - Visualizations for machine learning datasets. Apache-2 +
Facets Overview (🥉25 · ⭐ 7K · 💀) - 机器学习数据集的可视化。Apache-2 - [GitHub](https://github.com/PAIR-code/facets) (👨‍💻 28 · 🔀 850 · 📦 130 · 📋 150 - 50% open · ⏱️ 06.05.2021): @@ -1139,7 +1139,7 @@ _General-purpose and task-specific data visualization libraries._ pip install facets-overview ```
-
Chartify (🥉25 · ⭐ 3.2K · 💀) - Python library that makes it easy for data scientists to create.. Apache-2 +
Chartify (🥉25 · ⭐ 3.2K · 💀) - Python库,使数据科学家可以轻松创建。Apache-2 - [GitHub](https://github.com/spotify/chartify) (👨‍💻 21 · 🔀 280 · 📦 65 · 📋 72 - 56% open · ⏱️ 05.02.2021): @@ -1155,7 +1155,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge chartify ```
-
VisPy (🥉24 · ⭐ 2.9K) - High-performance interactive 2D/3D data visualization library. ❗Unlicensed +
VisPy (🥉24 · ⭐ 2.9K) - 高性能交互式2D / 3D数据可视化库。❗Unlicensed - [GitHub](https://github.com/vispy/vispy) (👨‍💻 180 · 🔀 580 · 📦 820 · 📋 1.3K - 20% open · ⏱️ 24.08.2022): @@ -1175,7 +1175,7 @@ _General-purpose and task-specific data visualization libraries._ npm install vispy ```
-
HyperTools (🥉24 · ⭐ 1.7K) - A Python toolbox for gaining geometric insights into high-dimensional.. MIT +
HyperTools (🥉24 · ⭐ 1.7K) - 一个Python工具箱,用于获得对高维的几何洞察力。MIT - [GitHub](https://github.com/ContextLab/hypertools) (👨‍💻 21 · 🔀 150 · 📥 20 · 📦 210 · 📋 190 - 35% open · ⏱️ 12.02.2022): @@ -1187,7 +1187,7 @@ _General-purpose and task-specific data visualization libraries._ pip install hypertools ```
-
pythreejs (🥉24 · ⭐ 830) - A Jupyter - Three.js bridge. ❗Unlicensed +
pythreejs (🥉24 · ⭐ 830) - Jupyter-Three.js桥。❗Unlicensed - [GitHub](https://github.com/jupyter-widgets/pythreejs) (👨‍💻 30 · 🔀 170 · 📦 21 · 📋 220 - 23% open · ⏱️ 25.08.2022): @@ -1207,7 +1207,7 @@ _General-purpose and task-specific data visualization libraries._ npm install jupyter-threejs ```
-
PyQtGraph (🥉23 · ⭐ 2.9K) - Fast data visualization and GUI tools for scientific /.. ❗Unlicensed +
PyQtGraph (🥉23 · ⭐ 2.9K) - 用于科学/工程的快速数据可视化和GUI工具。❗Unlicensed - [GitHub](https://github.com/pyqtgraph/pyqtgraph) (👨‍💻 230 · 🔀 930 · 📋 1K - 31% open · ⏱️ 24.08.2022): @@ -1223,7 +1223,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge pyqtgraph ```
-
FiftyOne (🥉23 · ⭐ 1.8K) - Visualize, create, and debug image and video datasets.. Apache-2 +
FiftyOne (🥉23 · ⭐ 1.8K) - 可视化,创建和调试图像和视频数据集。Apache-2 - [GitHub](https://github.com/voxel51/fiftyone) (👨‍💻 46 · 🔀 220 · 📦 160 · 📋 890 - 31% open · ⏱️ 25.08.2022): @@ -1235,7 +1235,7 @@ _General-purpose and task-specific data visualization libraries._ pip install fiftyone ```
-
openTSNE (🥉23 · ⭐ 1K) - Extensible, parallel implementations of t-SNE. BSD-3 +
openTSNE (🥉23 · ⭐ 1K) - t-SNE的可扩展并行实现。BSD-3 - [GitHub](https://github.com/pavlin-policar/openTSNE) (👨‍💻 10 · 🔀 120 · 📦 380 · 📋 110 - 5% open · ⏱️ 18.03.2022): @@ -1251,7 +1251,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge opentsne ```
-
python-ternary (🥉23 · ⭐ 580) - Ternary plotting library for python with matplotlib. MIT +
python-ternary (🥉23 · ⭐ 580) - 带有matplotlib的python三元绘图库。MIT - [GitHub](https://github.com/marcharper/python-ternary) (👨‍💻 27 · 🔀 140 · 📥 18 · 📦 100 · 📋 130 - 25% open · ⏱️ 27.02.2022): @@ -1267,7 +1267,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge python-ternary ```
-
Sweetviz (🥉22 · ⭐ 2.1K) - Visualize and compare datasets, target values and associations, with one.. MIT +
Sweetviz (🥉22 · ⭐ 2.1K) - 可视化和比较数据集,目标值和相关性。MIT - [GitHub](https://github.com/fbdesignpro/sweetviz) (👨‍💻 6 · 🔀 210 · 📋 100 - 28% open · ⏱️ 08.06.2022): @@ -1279,7 +1279,7 @@ _General-purpose and task-specific data visualization libraries._ pip install sweetviz ```
-
lets-plot (🥉22 · ⭐ 780) - An open-source plotting library for statistical data. MIT +
lets-plot (🥉22 · ⭐ 780) - 一个用于统计数据的开源绘图库。MIT - [GitHub](https://github.com/JetBrains/lets-plot) (👨‍💻 17 · 🔀 34 · 📥 300 · 📦 17 · 📋 270 - 27% open · ⏱️ 23.08.2022): @@ -1291,7 +1291,7 @@ _General-purpose and task-specific data visualization libraries._ pip install lets-plot ```
-
PDPbox (🥉22 · ⭐ 700 · 💀) - python partial dependence plot toolbox. MIT +
PDPbox (🥉22 · ⭐ 700 · 💀) - python部分依赖图工具箱。MIT - [GitHub](https://github.com/SauceCat/PDPbox) (👨‍💻 7 · 🔀 110 · 📦 510 · 📋 60 - 36% open · ⏱️ 14.03.2021): @@ -1307,7 +1307,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge pdpbox ```
-
Perspective (🥉21 · ⭐ 4.8K) - Streaming pivot visualization via WebAssembly. Apache-2 +
Perspective (🥉21 · ⭐ 4.8K) - 通过WebAssembly进行流式透视显示。Apache-2 - [GitHub](https://github.com/finos/perspective) (👨‍💻 72 · 🔀 490 · 📦 4 · 📋 540 - 14% open · ⏱️ 25.08.2022): @@ -1323,7 +1323,7 @@ _General-purpose and task-specific data visualization libraries._ npm install @finos/perspective-jupyterlab ```
-
plotnine (🥉21 · ⭐ 3.2K) - A grammar of graphics for Python. MIT +
plotnine (🥉21 · ⭐ 3.2K) - Python的图形语法。MIT - [GitHub](https://github.com/has2k1/plotnine) (👨‍💻 96 · 🔀 170 · 📋 500 - 13% open · ⏱️ 01.07.2022): @@ -1339,7 +1339,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge plotnine ```
-
Multicore-TSNE (🥉21 · ⭐ 1.7K · 💀) - Parallel t-SNE implementation with Python and Torch.. BSD-3 +
Multicore-TSNE (🥉21 · ⭐ 1.7K · 💀) - 使用Python和Torch并行执行t-SNE。BSD-3 - [GitHub](https://github.com/DmitryUlyanov/Multicore-TSNE) (👨‍💻 15 · 🔀 200 · 📦 310 · 📋 58 - 63% open · ⏱️ 19.08.2020): @@ -1355,7 +1355,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge multicore-tsne ```
-
AutoViz (🥉20 · ⭐ 890) - Automatically Visualize any dataset, any size with a single line of.. Apache-2 +
AutoViz (🥉20 · ⭐ 890) - 自动显示任意行的任何大小的任何数据集。Apache-2 - [GitHub](https://github.com/AutoViML/AutoViz) (👨‍💻 12 · 🔀 120 · 📦 240 · 📋 59 - 5% open · ⏱️ 10.08.2022): @@ -1367,7 +1367,7 @@ _General-purpose and task-specific data visualization libraries._ pip install autoviz ```
-
PyWaffle (🥉20 · ⭐ 500) - Make Waffle Charts in Python. MIT +
PyWaffle (🥉20 · ⭐ 500) - 用Python作图。MIT - [GitHub](https://github.com/gyli/PyWaffle) (👨‍💻 6 · 🔀 92 · 📦 150 · 📋 18 - 22% open · ⏱️ 08.06.2022): @@ -1379,7 +1379,7 @@ _General-purpose and task-specific data visualization libraries._ pip install pywaffle ```
-
PandasGUI (🥉19 · ⭐ 2.7K) - A GUI for Pandas DataFrames. ❗️MIT-0 +
PandasGUI (🥉19 · ⭐ 2.7K) - pandas Dataframe的GUI。❗️MIT-0 - [GitHub](https://github.com/adamerose/PandasGUI) (👨‍💻 13 · 🔀 180 · 📦 170 · 📋 160 - 27% open · ⏱️ 16.03.2022): @@ -1391,7 +1391,7 @@ _General-purpose and task-specific data visualization libraries._ pip install pandasgui ```
-
HiPlot (🥉19 · ⭐ 2.3K) - HiPlot makes understanding high dimensional data easy. MIT +
HiPlot (🥉19 · ⭐ 2.3K) - HiPlot使理解高维数据变得容易。MIT - [GitHub](https://github.com/facebookresearch/hiplot) (👨‍💻 8 · 🔀 120 · 📦 5 · 📋 80 - 15% open · ⏱️ 05.07.2022): @@ -1407,7 +1407,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge hiplot ```
-
pivottablejs (🥉19 · ⭐ 470 · 💀) - Dragndrop Pivot Tables and Charts for Jupyter/IPython.. ❗Unlicensed +
pivottablejs (🥉19 · ⭐ 470 · 💀) - Jupyter/IPython的Dragndrop数据透视表和图表。❗Unlicensed - [GitHub](https://github.com/nicolaskruchten/jupyter_pivottablejs) (👨‍💻 3 · 🔀 62 · 📦 260 · 📋 58 - 29% open · ⏱️ 04.12.2018): @@ -1419,7 +1419,7 @@ _General-purpose and task-specific data visualization libraries._ pip install pivottablejs ```
-
joypy (🥉19 · ⭐ 440 · 💤) - Joyplots in Python with matplotlib & pandas. MIT +
joypy (🥉19 · ⭐ 440 · 💤) - 带有matplotlib和pandas的Python中的Joyplots。MIT - [GitHub](https://github.com/leotac/joypy) (👨‍💻 6 · 🔀 47 · 📦 190 · 📋 47 - 21% open · ⏱️ 19.12.2021): @@ -1435,7 +1435,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge joypy ```
-
ivis (🥉19 · ⭐ 280) - Dimensionality reduction in very large datasets using Siamese.. Apache-2 +
ivis (🥉19 · ⭐ 280) - 使用算法对非常大的数据集进行降维。Apache-2 - [GitHub](https://github.com/beringresearch/ivis) (👨‍💻 10 · 🔀 35 · 📦 26 · 📋 57 - 5% open · ⏱️ 29.07.2022): @@ -1447,7 +1447,7 @@ _General-purpose and task-specific data visualization libraries._ pip install ivis ```
-
Pandas-Bokeh (🥉18 · ⭐ 800) - Bokeh Plotting Backend for Pandas and GeoPandas. MIT +
Pandas-Bokeh (🥉18 · ⭐ 800) - pandas和GeoPandas的Bokeh绘图后端。MIT - [GitHub](https://github.com/PatrikHlobil/Pandas-Bokeh) (👨‍💻 14 · 🔀 100 · 📋 98 - 31% open · ⏱️ 25.03.2022): @@ -1459,7 +1459,7 @@ _General-purpose and task-specific data visualization libraries._ pip install pandas-bokeh ```
-
animatplot (🥉18 · ⭐ 400 · 💀) - A python package for animating plots build on matplotlib. MIT +
animatplot (🥉18 · ⭐ 400 · 💀) - 用于在patpliblib上构建动画图的python程序包。MIT - [GitHub](https://github.com/t-makaro/animatplot) (👨‍💻 7 · 🔀 34 · 📦 35 · 📋 30 - 43% open · ⏱️ 05.10.2020): @@ -1475,7 +1475,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge animatplot ```
-
vega (🥉18 · ⭐ 330) - IPython/Jupyter notebook module for Vega and Vega-Lite. BSD-3 +
vega (🥉18 · ⭐ 330) - 适用于Vega和Vega-Lite的IPython/Jupyter笔记本模块。BSD-3 - [GitHub](https://github.com/vega/ipyvega) (👨‍💻 11 · 🔀 55 · 📋 95 - 13% open · ⏱️ 01.08.2022): @@ -1491,7 +1491,7 @@ _General-purpose and task-specific data visualization libraries._ conda install -c conda-forge vega ```
-
pdvega (🥉16 · ⭐ 340 · 💀) - Interactive plotting for Pandas using Vega-Lite. MIT +
pdvega (🥉16 · ⭐ 340 · 💀) - 使用Vega-Lite交互式绘制pandas数据图。MIT - [GitHub](https://github.com/altair-viz/pdvega) (👨‍💻 9 · 🔀 31 · 📦 67 · 📋 26 - 61% open · ⏱️ 29.03.2019): @@ -1503,7 +1503,7 @@ _General-purpose and task-specific data visualization libraries._ pip install pdvega ```
-
data-describe (🥉14 · ⭐ 290 · 💤) - datadescribe: Pythonic EDA Accelerator for Data.. ❗Unlicensed +
data-describe (🥉14 · ⭐ 290 · 💤) - 数据描述:Pythonic EDA数据科学加速器。❗Unlicensed - [GitHub](https://github.com/data-describe/data-describe) (👨‍💻 14 · 🔀 18 · 📋 240 - 28% open · ⏱️ 19.11.2021): @@ -1515,7 +1515,7 @@ _General-purpose and task-specific data visualization libraries._ pip install data-describe ```
-
nx-altair (🥉14 · ⭐ 200 · 💀) - Draw interactive NetworkX graphs with Altair. MIT +
nx-altair (🥉14 · ⭐ 200 · 💀) - 使用Altair绘制交互式NetworkX图形。MIT - [GitHub](https://github.com/Zsailer/nx_altair) (👨‍💻 3 · 🔀 23 · 📋 10 - 60% open · ⏱️ 02.06.2020): @@ -1527,7 +1527,7 @@ _General-purpose and task-specific data visualization libraries._ pip install nx-altair ```
-
nptsne (🥉11 · ⭐ 29 · 💀) - nptsne is a numpy compatible python binary package that offers a.. Apache-2 +
nptsne (🥉11 · ⭐ 29 · 💀) - nptsne是numpy兼容的python二进制包。Apache-2 - [GitHub](https://github.com/biovault/nptsne) (👨‍💻 3 · 🔀 2 · 📦 4 · 📋 13 - 53% open · ⏱️ 03.02.2021): @@ -1541,13 +1541,13 @@ _General-purpose and task-specific data visualization libraries._

-## Text Data & NLP +## 文本数据和NLP -Back to top +Back to top -_Libraries for processing, cleaning, manipulating, and analyzing text data as well as libraries for NLP tasks such as language detection, fuzzy matching, classification, seq2seq learning, conversational AI, keyword extraction, and translation._ +_用于处理,清理,处理和分析文本数据的库,以及用于NLP任务的库,例如语言检测,模糊匹配,文本分类,seq2seq学习,智能对话,关键字提取和机器翻译。_ -
spaCy (🥇38 · ⭐ 24K) - Industrial-strength Natural Language Processing (NLP) in Python. MIT +
spaCy (🥇38 · ⭐ 24K) - Python中的工业级自然语言处理(NLP)工具包。MIT - [GitHub](https://github.com/explosion/spaCy) (👨‍💻 700 · 🔀 3.8K · 📥 3.1K · 📦 43K · 📋 5.2K - 1% open · ⏱️ 23.08.2022): @@ -1563,7 +1563,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge spacy ```
-
transformers (🥇37 · ⭐ 69K) - Transformers: State-of-the-art Natural Language.. Apache-2 +
transformers (🥇37 · ⭐ 69K) - transformers:先进的自然语言模型库。Apache-2 - [GitHub](https://github.com/huggingface/transformers) (👨‍💻 1.4K · 🔀 15K · 📥 1.5K · 📦 34K · 📋 9.9K - 4% open · ⏱️ 25.08.2022): @@ -1579,7 +1579,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge transformers ```
-
gensim (🥇36 · ⭐ 13K) - Topic Modelling for Humans. ❗️LGPL-2.1 +
gensim (🥇36 · ⭐ 13K) - 主题模型工具库。❗️LGPL-2.1 - [GitHub](https://github.com/RaRe-Technologies/gensim) (👨‍💻 430 · 🔀 4K · 📥 3.8K · 📦 36K · 📋 1.8K - 20% open · ⏱️ 22.08.2022): @@ -1595,7 +1595,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge gensim ```
-
sentence-transformers (🥇34 · ⭐ 8.3K) - Sentence Embeddings with BERT & XLNet. Apache-2 +
sentence-transformers (🥇34 · ⭐ 8.3K) - BERT和XLNet的句子嵌入。Apache-2 - [GitHub](https://github.com/UKPLab/sentence-transformers) (👨‍💻 93 · 🔀 1.6K · 📦 4K · 📋 1.5K - 51% open · ⏱️ 15.08.2022): @@ -1607,7 +1607,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install sentence-transformers ```
-
AllenNLP (🥇33 · ⭐ 11K) - An open-source NLP research library, built on PyTorch. Apache-2 +
AllenNLP (🥇33 · ⭐ 11K) - 基于PyTorch的开源NLP研究库。Apache-2 - [GitHub](https://github.com/allenai/allennlp) (👨‍💻 260 · 🔀 2.1K · 📥 47 · 📦 2.7K · 📋 2.5K - 3% open · ⏱️ 24.08.2022): @@ -1619,7 +1619,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install allennlp ```
-
nltk (🥇33 · ⭐ 11K) - Suite of libraries and programs for symbolic and statistical natural.. Apache-2 +
nltk (🥇33 · ⭐ 11K) - 用于符号和统计自然的库和程序套件。Apache-2 - [GitHub](https://github.com/nltk/nltk) (👨‍💻 430 · 🔀 2.5K · 📦 150K · 📋 1.6K - 13% open · ⏱️ 29.07.2022): @@ -1635,7 +1635,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge nltk ```
-
sentencepiece (🥇33 · ⭐ 6.1K) - Unsupervised text tokenizer for Neural Network-based text.. Apache-2 +
sentencepiece (🥇33 · ⭐ 6.1K) - 用于基于神经网络的文本的预处理器。Apache-2 - [GitHub](https://github.com/google/sentencepiece) (👨‍💻 68 · 🔀 810 · 📥 22K · 📦 17K · 📋 540 - 2% open · ⏱️ 21.08.2022): @@ -1651,7 +1651,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge sentencepiece ```
-
ChatterBot (🥇32 · ⭐ 12K · 💀) - ChatterBot is a machine learning, conversational dialog engine.. BSD-3 +
ChatterBot (🥇32 · ⭐ 12K · 💀) - ChatterBot是机器学习的对话引擎。BSD-3 - [GitHub](https://github.com/gunthercox/ChatterBot) (👨‍💻 100 · 🔀 4K · 📦 4.5K · 📋 1.6K - 19% open · ⏱️ 01.06.2021): @@ -1663,7 +1663,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install chatterbot ```
-
fastText (🥇31 · ⭐ 24K) - Library for fast text representation and classification. MIT +
fastText (🥇31 · ⭐ 24K) - 用于快速文本表示和分类的库。MIT - [GitHub](https://github.com/facebookresearch/fastText) (👨‍💻 59 · 🔀 4.3K · 📦 3.2K · 📋 1K - 41% open · ⏱️ 04.03.2022): @@ -1679,7 +1679,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge fasttext ```
-
TextBlob (🥇31 · ⭐ 8.3K · 💤) - Simple, Pythonic, text processing--Sentiment analysis, part-of-.. MIT +
TextBlob (🥇31 · ⭐ 8.3K · 💤) - 包含情感分析、词性标注等等功能的NLP工具库。MIT - [GitHub](https://github.com/sloria/TextBlob) (👨‍💻 35 · 🔀 1K · 📥 100 · 📦 22K · 📋 250 - 37% open · ⏱️ 22.10.2021): @@ -1695,7 +1695,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge textblob ```
-
flair (🥈30 · ⭐ 12K) - A very simple framework for state-of-the-art Natural Language.. ❗Unlicensed +
flair (🥈30 · ⭐ 12K) - 一个用于最先进的自然语言处理的非常简单的框架。❗Unlicensed - [GitHub](https://github.com/flairNLP/flair) (👨‍💻 230 · 🔀 1.6K · 📦 1.6K · 📋 1.9K - 6% open · ⏱️ 18.08.2022): @@ -1707,7 +1707,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install flair ```
-
fuzzywuzzy (🥈30 · ⭐ 8.7K · 💤) - Fuzzy String Matching in Python. ❗️GPL-2.0 +
fuzzywuzzy (🥈30 · ⭐ 8.7K · 💤) - Python中的模糊字符串匹配。❗️GPL-2.0 - [GitHub](https://github.com/seatgeek/fuzzywuzzy) (👨‍💻 70 · 🔀 870 · 📦 14K · 📋 180 - 43% open · ⏱️ 09.09.2021): @@ -1723,7 +1723,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge fuzzywuzzy ```
-
fairseq (🥈29 · ⭐ 19K) - Facebook AI Research Sequence-to-Sequence Toolkit written in Python. MIT +
fairseq (🥈29 · ⭐ 19K) - 用Python编写的Facebook AI Research Sequence-to-Sequence工具包。MIT - [GitHub](https://github.com/facebookresearch/fairseq) (👨‍💻 400 · 🔀 4.7K · 📥 260 · 📦 920 · 📋 3.5K - 18% open · ⏱️ 24.08.2022): @@ -1735,7 +1735,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install fairseq ```
-
TextDistance (🥈29 · ⭐ 2.9K) - Compute distance between sequences. 30+ algorithms, pure python.. MIT +
TextDistance (🥈29 · ⭐ 2.9K) - 计算序列之间的距离,包含30多种算法。MIT - [GitHub](https://github.com/life4/textdistance) (👨‍💻 12 · 🔀 230 · 📥 830 · 📦 2.6K · ⏱️ 21.08.2022): @@ -1751,7 +1751,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge textdistance ```
-
TensorFlow Text (🥈29 · ⭐ 980) - Making text a first-class citizen in TensorFlow. Apache-2 +
TensorFlow Text (🥈29 · ⭐ 980) - TensorFlow文本处理。Apache-2 - [GitHub](https://github.com/tensorflow/text) (👨‍💻 91 · 🔀 230 · 📦 2.2K · 📋 180 - 18% open · ⏱️ 22.08.2022): @@ -1763,7 +1763,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install tensorflow-text ```
-
GluonNLP (🥈28 · ⭐ 2.4K · 💤) - Toolkit that enables easy text preprocessing, datasets.. Apache-2 +
GluonNLP (🥈28 · ⭐ 2.4K · 💤) - 可轻松进行文本预处理,数据集加载和处理的工具包。Apache-2 - [GitHub](https://github.com/dmlc/gluon-nlp) (👨‍💻 82 · 🔀 490 · 📦 920 · 📋 530 - 44% open · ⏱️ 24.08.2021): @@ -1775,7 +1775,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install gluonnlp ```
-
DeepPavlov (🥈27 · ⭐ 5.8K) - An open source library for deep learning end-to-end dialog.. Apache-2 +
DeepPavlov (🥈27 · ⭐ 5.8K) - 一个用于深度学习端到端对话的开源库。Apache-2 - [GitHub](https://github.com/deepmipt/DeepPavlov) (👨‍💻 67 · 🔀 1K · 📦 280 · 📋 620 - 8% open · ⏱️ 31.05.2022): @@ -1787,7 +1787,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install deeppavlov ```
-
OpenNMT (🥈27 · ⭐ 5.7K) - Open Source Neural Machine Translation in PyTorch. MIT +
OpenNMT (🥈27 · ⭐ 5.7K) - PyTorch中的开源神经机器翻译。MIT - [GitHub](https://github.com/OpenNMT/OpenNMT-py) (👨‍💻 180 · 🔀 2K · 📦 150 · 📋 1.3K - 6% open · ⏱️ 18.08.2022): @@ -1799,7 +1799,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install OpenNMT-py ```
-
spark-nlp (🥈27 · ⭐ 2.9K) - State of the Art Natural Language Processing. Apache-2 +
spark-nlp (🥈27 · ⭐ 2.9K) - 最先进的自然语言处理。Apache-2 - [GitHub](https://github.com/JohnSnowLabs/spark-nlp) (👨‍💻 130 · 🔀 570 · 📋 700 - 5% open · ⏱️ 24.08.2022): @@ -1811,7 +1811,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install spark-nlp ```
-
spacy-transformers (🥈27 · ⭐ 1.1K) - Use pretrained transformers like BERT, XLNet and GPT-2.. MIT spacy +
spacy-transformers (🥈27 · ⭐ 1.1K) - 使用经过预训练的transformer模型,例如BERT,XLNet和GPT-2。MIT spacy - [GitHub](https://github.com/explosion/spacy-transformers) (👨‍💻 18 · 🔀 140 · 📦 610 · ⏱️ 23.08.2022): @@ -1823,7 +1823,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install spacy-transformers ```
-
ParlAI (🥈26 · ⭐ 9.4K) - A framework for training and evaluating AI models on a variety of.. MIT +
ParlAI (🥈26 · ⭐ 9.4K) - 一个用于训练和评估AI模型的框架。MIT - [GitHub](https://github.com/facebookresearch/ParlAI) (👨‍💻 200 · 🔀 1.8K · 📦 87 · 📋 1.4K - 5% open · ⏱️ 25.08.2022): @@ -1835,7 +1835,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install parlai ```
-
Tokenizers (🥈26 · ⭐ 5.8K) - Fast State-of-the-Art Tokenizers optimized for Research and.. Apache-2 +
Tokenizers (🥈26 · ⭐ 5.8K) - 针对研究和应用进行了优化的快速最先进的分词器。Apache-2 - [GitHub](https://github.com/huggingface/tokenizers) (👨‍💻 59 · 🔀 480 · 📦 51 · 📋 650 - 30% open · ⏱️ 25.08.2022): @@ -1851,7 +1851,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge tokenizers ```
-
Sumy (🥈26 · ⭐ 2.9K) - Module for automatic summarization of text documents and HTML pages. Apache-2 +
Sumy (🥈26 · ⭐ 2.9K) - 自动汇总文本文档和HTML页面的模块。Apache-2 - [GitHub](https://github.com/miso-belica/sumy) (👨‍💻 23 · 🔀 470 · 📦 1.4K · 📋 110 - 15% open · ⏱️ 31.07.2022): @@ -1863,7 +1863,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install sumy ```
-
jellyfish (🥈26 · ⭐ 1.7K · 💤) - a python library for doing approximate and phonetic matching of.. BSD-2 +
jellyfish (🥈26 · ⭐ 1.7K · 💤) - 一个python库,用于进行文本相似度和距离计算。BSD-2 - [GitHub](https://github.com/jamesturk/jellyfish) (👨‍💻 25 · 🔀 140 · 📦 4.1K · 📋 110 - 10% open · ⏱️ 07.01.2022): @@ -1879,7 +1879,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge jellyfish ```
-
Rasa (🥈25 · ⭐ 15K) - Open source machine learning framework to automate text- and voice-.. Apache-2 +
Rasa (🥈25 · ⭐ 15K) - 开源机器学习框架,可处理文本和语音多场景问题。Apache-2 - [GitHub](https://github.com/RasaHQ/rasa) (👨‍💻 550 · 🔀 4K · 📋 6.6K - 12% open · ⏱️ 24.08.2022): @@ -1891,7 +1891,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install rasa ```
-
stanza (🥈25 · ⭐ 6.2K) - Official Stanford NLP Python Library for Many Human Languages. ❗Unlicensed +
stanza (🥈25 · ⭐ 6.2K) - 斯坦福NLP官方Python语言库,支持多种语言。❗Unlicensed - [GitHub](https://github.com/stanfordnlp/stanza) (👨‍💻 48 · 🔀 790 · 📦 1.2K · 📋 720 - 11% open · ⏱️ 23.04.2022): @@ -1907,7 +1907,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c stanfordnlp stanza ```
-
ftfy (🥈25 · ⭐ 3.3K) - Fixes mojibake and other glitches in Unicode text, after the fact. MIT +
ftfy (🥈25 · ⭐ 3.3K) - 修复Unicode文本中的故障功能的工具库。MIT - [GitHub](https://github.com/rspeer/python-ftfy) (👨‍💻 18 · 🔀 110 · 📦 6.6K · 📋 130 - 9% open · ⏱️ 09.02.2022): @@ -1923,7 +1923,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge ftfy ```
-
fastNLP (🥈25 · ⭐ 2.7K) - fastNLP: A Modularized and Extensible NLP Framework. Currently still.. Apache-2 +
fastNLP (🥈25 · ⭐ 2.7K) - fastNLP:模块化和可扩展的NLP框架。Apache-2 - [GitHub](https://github.com/fastnlp/fastNLP) (👨‍💻 59 · 🔀 420 · 📥 66 · 📦 90 · 📋 190 - 22% open · ⏱️ 23.08.2022): @@ -1935,7 +1935,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install fastnlp ```
-
neuralcoref (🥈25 · ⭐ 2.6K · 💀) - Fast Coreference Resolution in spaCy with Neural Networks. MIT +
neuralcoref (🥈25 · ⭐ 2.6K · 💀) - 基于SpaCy的神经网络实现快速共指解析。MIT - [GitHub](https://github.com/huggingface/neuralcoref) (👨‍💻 21 · 🔀 440 · 📥 450 · 📦 520 · 📋 300 - 16% open · ⏱️ 22.06.2021): @@ -1951,7 +1951,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge neuralcoref ```
-
PyTextRank (🥈25 · ⭐ 1.9K) - Python implementation of TextRank for phrase extraction and.. MIT +
PyTextRank (🥈25 · ⭐ 1.9K) - TextRank的Python实现。MIT - [GitHub](https://github.com/DerwenAI/pytextrank) (👨‍💻 18 · 🔀 300 · 📦 280 · 📋 89 - 19% open · ⏱️ 27.07.2022): @@ -1963,7 +1963,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install pytextrank ```
-
SciSpacy (🥈25 · ⭐ 1.2K) - A full spaCy pipeline and models for scientific/biomedical.. Apache-2 +
SciSpacy (🥈25 · ⭐ 1.2K) - 完整的科学/生物医学的SpaCy应用案例。Apache-2 - [GitHub](https://github.com/allenai/scispacy) (👨‍💻 24 · 🔀 160 · 📦 500 · 📋 260 - 10% open · ⏱️ 04.08.2022): @@ -1975,7 +1975,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install scispacy ```
-
pyahocorasick (🥈25 · ⭐ 740) - Python module (C extension and plain python) implementing Aho-.. BSD-3 +
pyahocorasick (🥈25 · ⭐ 740) - Python文本工具库。BSD-3 - [GitHub](https://github.com/WojciechMula/pyahocorasick) (👨‍💻 24 · 🔀 110 · 📦 1.2K · 📋 120 - 20% open · ⏱️ 04.05.2022): @@ -1991,7 +1991,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge pyahocorasick ```
-
Ciphey (🥈24 · ⭐ 11K) - Automatically decrypt encryptions without knowing the key or cipher,.. MIT +
Ciphey (🥈24 · ⭐ 11K) - 在不知道密钥或密码的情况下自动解密加密。MIT - [GitHub](https://github.com/Ciphey/Ciphey) (👨‍💻 46 · 🔀 650 · 📋 290 - 15% open · ⏱️ 28.06.2022): @@ -2007,7 +2007,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we docker pull remnux/ciphey ```
-
vaderSentiment (🥈24 · ⭐ 3.7K) - VADER Sentiment Analysis. VADER (Valence Aware Dictionary and.. MIT +
vaderSentiment (🥈24 · ⭐ 3.7K) - VADER情感分析。MIT - [GitHub](https://github.com/cjhutto/vaderSentiment) (👨‍💻 11 · 🔀 880 · 📦 4.1K · 📋 110 - 31% open · ⏱️ 01.04.2022): @@ -2019,7 +2019,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install vadersentiment ```
-
torchtext (🥈24 · ⭐ 3.1K) - Data loaders and abstractions for text and NLP. BSD-3 +
torchtext (🥈24 · ⭐ 3.1K) - 文本和NLP的数据加载器和抽象。BSD-3 - [GitHub](https://github.com/pytorch/text) (👨‍💻 140 · 🔀 700 · 📋 670 - 33% open · ⏱️ 19.08.2022): @@ -2031,7 +2031,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install torchtext ```
-
pytorch-nlp (🥈24 · ⭐ 2.1K · 💀) - Basic Utilities for PyTorch Natural Language Processing.. BSD-3 +
pytorch-nlp (🥈24 · ⭐ 2.1K · 💀) - PyTorch自然语言处理(NLP)的基本实用程序。BSD-3 - [GitHub](https://github.com/PetrochukM/PyTorch-NLP) (👨‍💻 18 · 🔀 250 · 📦 410 · 📋 67 - 26% open · ⏱️ 10.07.2021): @@ -2043,7 +2043,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install pytorch-nlp ```
-
CLTK (🥈24 · ⭐ 740) - The Classical Language Toolkit. MIT +
CLTK (🥈24 · ⭐ 740) - 古典语言工具包。MIT - [GitHub](https://github.com/cltk/cltk) (👨‍💻 120 · 🔀 310 · 📥 25 · 📦 210 · 📋 530 - 5% open · ⏱️ 20.07.2022): @@ -2055,7 +2055,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install cltk ```
-
flashtext (🥉23 · ⭐ 5.2K · 💀) - Extract Keywords from sentence or Replace keywords in sentences. MIT +
flashtext (🥉23 · ⭐ 5.2K · 💀) - 从句子中提取关键字或替换句子中的关键字。MIT - [GitHub](https://github.com/vi3k6i5/flashtext) (👨‍💻 7 · 🔀 570 · 📦 850 · 📋 100 - 49% open · ⏱️ 03.05.2020): @@ -2067,7 +2067,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install flashtext ```
-
Dedupe (🥉23 · ⭐ 3.5K) - A python library for accurate and scalable fuzzy matching, record.. MIT +
Dedupe (🥉23 · ⭐ 3.5K) - 一个用于准确和可扩展的模糊匹配的python库。MIT - [GitHub](https://github.com/dedupeio/dedupe) (👨‍💻 64 · 🔀 460 · 📦 230 · 📋 760 - 7% open · ⏱️ 17.08.2022): @@ -2079,7 +2079,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install dedupe ```
-
snowballstemmer (🥉23 · ⭐ 580 · 💤) - Snowball compiler and stemming algorithms. BSD-3 +
snowballstemmer (🥉23 · ⭐ 580 · 💤) - Snowball编译器和词干算法。BSD-3 - [GitHub](https://github.com/snowballstem/snowball) (👨‍💻 28 · 🔀 160 · 📦 4 · 📋 60 - 26% open · ⏱️ 17.12.2021): @@ -2095,7 +2095,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge snowballstemmer ```
-
pySBD (🥉23 · ⭐ 470 · 💀) - pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence.. MIT +
pySBD (🥉23 · ⭐ 470 · 💀) - pySBD(Python句子边界歧义消除)。MIT - [GitHub](https://github.com/nipunsadvilkar/pySBD) (👨‍💻 6 · 🔀 58 · 📦 390 · 📋 65 - 21% open · ⏱️ 11.02.2021): @@ -2107,7 +2107,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install pysbd ```
-
stop-words (🥉23 · ⭐ 140 · 💀) - Get list of common stop words in various languages in Python. BSD-3 +
stop-words (🥉23 · ⭐ 140 · 💀) - 获取Python中各种语言的常用停用词表。BSD-3 - [GitHub](https://github.com/Alir3z4/python-stop-words) (👨‍💻 8 · 🔀 26 · 📦 1.6K · 📋 12 - 25% open · ⏱️ 23.07.2018): @@ -2119,7 +2119,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install stop-words ```
-
textgenrnn (🥉22 · ⭐ 4.7K · 💀) - Easily train your own text-generating neural network.. ❗Unlicensed +
textgenrnn (🥉22 · ⭐ 4.7K · 💀) - 轻松地训练自己的文本生成神经网络。❗Unlicensed - [GitHub](https://github.com/minimaxir/textgenrnn) (👨‍💻 19 · 🔀 720 · 📥 740 · 📦 1K · 📋 220 - 57% open · ⏱️ 14.07.2020): @@ -2131,7 +2131,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install textgenrnn ```
-
NeMo (🥉22 · ⭐ 4.6K) - NeMo: a toolkit for conversational AI. Apache-2 +
NeMo (🥉22 · ⭐ 4.6K) - NeMo:用于智能对话的工具包。Apache-2 - [GitHub](https://github.com/NVIDIA/NeMo) (👨‍💻 170 · 🔀 1.1K · 📥 15K · 📋 1.2K - 3% open · ⏱️ 25.08.2022): @@ -2143,7 +2143,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install nemo-toolkit ```
-
T5 (🥉22 · ⭐ 4.4K) - Code for the paper Exploring the Limits of Transfer Learning with a.. Apache-2 +
T5 (🥉22 · ⭐ 4.4K) - 探索迁移学习的论文源码Apache-2 - [GitHub](https://github.com/google-research/text-to-text-transfer-transformer) (👨‍💻 50 · 🔀 590 · 📦 110 · 📋 390 - 12% open · ⏱️ 10.08.2022): @@ -2155,7 +2155,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install t5 ```
-
phonenumbers (🥉22 · ⭐ 3.1K) - Python port of Google's libphonenumber. Apache-2 +
phonenumbers (🥉22 · ⭐ 3.1K) - Google的libphonenumber的Python端口。Apache-2 - [GitHub](https://github.com/daviddrysdale/python-phonenumbers) (👨‍💻 26 · 🔀 370 · 📋 150 - 2% open · ⏱️ 19.08.2022): @@ -2171,7 +2171,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge phonenumbers ```
-
langid (🥉22 · ⭐ 2K · 💀) - Stand-alone language identification system. ❗Unlicensed +
langid (🥉22 · ⭐ 2K · 💀) - 独立的语言识别系统。❗Unlicensed - [GitHub](https://github.com/saffsd/langid.py) (👨‍💻 9 · 🔀 280 · 📦 1.1K · 📋 71 - 35% open · ⏱️ 15.07.2017): @@ -2183,7 +2183,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install langid ```
-
scattertext (🥉22 · ⭐ 1.9K) - Beautiful visualizations of how language differs among document.. Apache-2 +
scattertext (🥉22 · ⭐ 1.9K) - 文件之间语言分布的漂亮可视化效果。Apache-2 - [GitHub](https://github.com/JasonKessler/scattertext) (👨‍💻 12 · 🔀 250 · 📦 310 · 📋 89 - 17% open · ⏱️ 26.03.2022): @@ -2199,7 +2199,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge scattertext ```
-
anaGo (🥉22 · ⭐ 1.5K · 💀) - Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition,.. MIT +
anaGo (🥉22 · ⭐ 1.5K · 💀) - 双向LSTM-CRF和ELMo实现,可用于命名实体识别和文本分类等任务。MIT - [GitHub](https://github.com/Hironsan/anago) (👨‍💻 11 · 🔀 360 · 📦 30 · 📋 110 - 33% open · ⏱️ 01.04.2021): @@ -2211,7 +2211,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install anago ```
-
sense2vec (🥉22 · ⭐ 1.4K · 💤) - Contextually-keyed word vectors. MIT +
sense2vec (🥉22 · ⭐ 1.4K · 💤) - 上下文相关性构建词向量。MIT - [GitHub](https://github.com/explosion/sense2vec) (👨‍💻 17 · 🔀 220 · 📥 36K · 📦 170 · 📋 110 - 18% open · ⏱️ 16.08.2021): @@ -2227,7 +2227,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge sense2vec ```
-
Snips NLU (🥉21 · ⭐ 3.7K · 💀) - Snips Python library to extract meaning from text. Apache-2 +
Snips NLU (🥉21 · ⭐ 3.7K · 💀) - 从文本中提取含义的Python库。Apache-2 - [GitHub](https://github.com/snipsco/snips-nlu) (👨‍💻 22 · 🔀 490 · 📋 260 - 23% open · ⏱️ 03.05.2021): @@ -2239,7 +2239,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install snips-nlu ```
-
Texthero (🥉21 · ⭐ 2.5K) - Text preprocessing, representation and visualization from zero to hero. MIT +
Texthero (🥉21 · ⭐ 2.5K) - 文本预处理,表示和可视化从入门到精通。MIT - [GitHub](https://github.com/jbesomi/texthero) (👨‍💻 19 · 🔀 220 · 📥 92 · 📋 110 - 45% open · ⏱️ 19.07.2022): @@ -2251,7 +2251,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install texthero ```
-
Texar (🥉21 · ⭐ 2.3K · 💀) - Toolkit for Machine Learning, Natural Language Processing, and.. Apache-2 +
Texar (🥉21 · ⭐ 2.3K · 💀) - 机器学习,自然语言处理等工具包。Apache-2 - [GitHub](https://github.com/asyml/texar) (👨‍💻 43 · 🔀 360 · 📦 26 · 📋 160 - 19% open · ⏱️ 29.07.2020): @@ -2263,7 +2263,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install texar ```
-
polyglot (🥉21 · ⭐ 2K · 💀) - Multilingual text (NLP) processing toolkit. ❗Unlicensed +
polyglot (🥉21 · ⭐ 2K · 💀) - 多语言文本(NLP)处理工具包。❗Unlicensed - [GitHub](https://github.com/aboSamoor/polyglot) (👨‍💻 26 · 🔀 310 · 📦 750 · 📋 210 - 68% open · ⏱️ 22.09.2020): @@ -2275,7 +2275,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install polyglot ```
-
YouTokenToMe (🥉21 · ⭐ 820 · 💀) - Unsupervised text tokenizer focused on computational efficiency. MIT +
YouTokenToMe (🥉21 · ⭐ 820 · 💀) - 用于基于神经网络的文本的预处理器。MIT - [GitHub](https://github.com/VKCOM/YouTokenToMe) (👨‍💻 6 · 🔀 61 · 📦 290 · 📋 54 - 55% open · ⏱️ 28.01.2021): @@ -2287,7 +2287,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install youtokentome ```
-
inflect (🥉21 · ⭐ 690) - Correctly generate plurals, ordinals, indefinite articles; convert numbers.. MIT +
inflect (🥉21 · ⭐ 690) - 辅助功能,正确生成复数,序数,不定冠词,转换数字。MIT - [GitHub](https://github.com/jaraco/inflect) (👨‍💻 45 · 🔀 74 · 📋 91 - 18% open · ⏱️ 26.08.2022): @@ -2303,7 +2303,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge inflect ```
-
PyText (🥉20 · ⭐ 6.4K) - A natural language modeling framework based on PyTorch. ❗Unlicensed +
PyText (🥉20 · ⭐ 6.4K) - 基于PyTorch的自然语言建模框架。❗Unlicensed - [GitHub](https://github.com/facebookresearch/pytext) (👨‍💻 230 · 🔀 790 · 📥 300 · 📦 110 · 📋 140 - 45% open · ⏱️ 11.08.2022): @@ -2315,7 +2315,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install pytext-nlp ```
-
MatchZoo (🥉20 · ⭐ 3.7K · 💀) - Facilitating the design, comparison and sharing of deep.. Apache-2 +
MatchZoo (🥉20 · ⭐ 3.7K · 💀) - 便于深层设计,比较和共享的工具库。Apache-2 - [GitHub](https://github.com/NTMC-Community/MatchZoo) (👨‍💻 36 · 🔀 900 · 📦 11 · 📋 460 - 7% open · ⏱️ 02.06.2021): @@ -2327,7 +2327,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install matchzoo ```
-
NLP Architect (🥉20 · ⭐ 2.9K) - A model library for exploring state-of-the-art deep learning.. Apache-2 +
NLP Architect (🥉20 · ⭐ 2.9K) - 用于探索最先进的深度学习的模型库。Apache-2 - [GitHub](https://github.com/IntelLabs/nlp-architect) (👨‍💻 37 · 🔀 430 · 📦 8 · 📋 130 - 11% open · ⏱️ 29.06.2022): @@ -2339,7 +2339,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install nlp-architect ```
-
FARM (🥉20 · ⭐ 1.6K) - Fast & easy transfer learning for NLP. Harvesting language models.. Apache-2 +
FARM (🥉20 · ⭐ 1.6K) - NLP的快速和轻松迁移学习。Apache-2 - [GitHub](https://github.com/deepset-ai/FARM) (👨‍💻 37 · 🔀 220 · 📋 400 - 0% open · ⏱️ 25.04.2022): @@ -2351,7 +2351,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install farm ```
-
DELTA (🥉20 · ⭐ 1.5K · 💀) - DELTA is a deep learning based natural language and speech.. Apache-2 +
DELTA (🥉20 · ⭐ 1.5K · 💀) - DELTA是一个基于深度学习的自然语言和语音处理平台。Apache-2 - [GitHub](https://github.com/Delta-ML/delta) (👨‍💻 41 · 🔀 290 · 📋 75 - 1% open · ⏱️ 17.12.2020): @@ -2367,7 +2367,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we docker pull zh794390558/delta ```
-
pyfasttext (🥉20 · ⭐ 230 · 💀) - Yet another Python binding for fastText. ❗️GPL-3.0 +
pyfasttext (🥉20 · ⭐ 230 · 💀) - fastText的另一个Python接口。❗️GPL-3.0 - [GitHub](https://github.com/vrasneur/pyfasttext) (👨‍💻 4 · 🔀 30 · 📥 350 · 📦 240 · 📋 49 - 42% open · ⏱️ 08.12.2018): @@ -2379,7 +2379,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install pyfasttext ```
-
haystack (🥉19 · ⭐ 5.2K) - End-to-end Python framework for building natural language search.. Apache-2 +
haystack (🥉19 · ⭐ 5.2K) - 用于构建自然语言搜索的端到端Python框架。Apache-2 - [GitHub](https://github.com/deepset-ai/haystack) (👨‍💻 140 · 🔀 830 · 📥 15 · 📋 1.5K - 14% open · ⏱️ 25.08.2022): @@ -2391,7 +2391,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install haystack ```
-
Kashgari (🥉19 · ⭐ 2.3K · 💀) - Kashgari is a production-level NLP Transfer learning.. Apache-2 +
Kashgari (🥉19 · ⭐ 2.3K · 💀) - Kashgari是工业级的NLP迁移学习框架。Apache-2 - [GitHub](https://github.com/BrikerMan/Kashgari) (👨‍💻 21 · 🔀 440 · 📦 54 · 📋 370 - 11% open · ⏱️ 09.07.2021): @@ -2403,7 +2403,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install kashgari-tf ```
-
fast-bert (🥉19 · ⭐ 1.8K) - Super easy library for BERT based NLP models. Apache-2 +
fast-bert (🥉19 · ⭐ 1.8K) - 用于基于BERT的NLP模型的简单易用工具库。Apache-2 - [GitHub](https://github.com/utterworks/fast-bert) (👨‍💻 36 · 🔀 330 · 📋 250 - 61% open · ⏱️ 25.08.2022): @@ -2415,7 +2415,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install fast-bert ```
-
Sockeye (🥉19 · ⭐ 1.1K) - Sequence-to-sequence framework with a focus on Neural Machine.. Apache-2 +
Sockeye (🥉19 · ⭐ 1.1K) - 序列到序列框架。Apache-2 - [GitHub](https://github.com/awslabs/sockeye) (👨‍💻 57 · 🔀 300 · 📥 15 · 📋 280 - 2% open · ⏱️ 25.08.2022): @@ -2427,7 +2427,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install sockeye ```
-
gpt-2-simple (🥉18 · ⭐ 3K) - Python package to easily retrain OpenAI's GPT-2 text-.. ❗Unlicensed +
gpt-2-simple (🥉18 · ⭐ 3K) - 可轻松重新训练OpenAI的GPT-2文本模型的Python软件包。❗Unlicensed - [GitHub](https://github.com/minimaxir/gpt-2-simple) (👨‍💻 21 · 🔀 600 · 📥 340 · 📋 250 - 61% open · ⏱️ 22.05.2022): @@ -2439,7 +2439,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install gpt-2-simple ```
-
textacy (🥉18 · ⭐ 2K) - NLP, before and after spaCy. ❗Unlicensed +
textacy (🥉18 · ⭐ 2K) - spaCy之前和之后的NLP。❗Unlicensed - [GitHub](https://github.com/chartbeat-labs/textacy) (👨‍💻 32 · 🔀 230 · 📋 250 - 11% open · ⏱️ 06.03.2022): @@ -2455,7 +2455,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we conda install -c conda-forge textacy ```
-
finetune (🥉18 · ⭐ 660) - Scikit-learn style model finetuning for NLP. MPL-2.0 +
finetune (🥉18 · ⭐ 660) - 针对NLP的Scikit风格模型微调。MPL-2.0 - [GitHub](https://github.com/IndicoDataSolutions/finetune) (👨‍💻 19 · 🔀 71 · 📦 9 · 📋 140 - 15% open · ⏱️ 16.06.2022): @@ -2467,7 +2467,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install finetune ```
-
skift (🥉18 · ⭐ 230) - scikit-learn wrappers for Python fastText. MIT +
skift (🥉18 · ⭐ 230) - 适用于Python fastText的scikit-learn包装器。MIT - [GitHub](https://github.com/shaypal5/skift) (👨‍💻 9 · 🔀 23 · 📦 12 · 📋 11 - 9% open · ⏱️ 07.06.2022): @@ -2479,7 +2479,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install skift ```
-
DeepMatcher (🥉17 · ⭐ 440 · 💀) - Python package for performing Entity and Text Matching using.. BSD-3 +
DeepMatcher (🥉17 · ⭐ 440 · 💀) - 用于实体和文本匹配的Python包。BSD-3 - [GitHub](https://github.com/anhaidgroup/deepmatcher) (👨‍💻 7 · 🔀 98 · 📦 21 · 📋 86 - 72% open · ⏱️ 13.06.2021): @@ -2491,7 +2491,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install deepmatcher ```
-
Camphr (🥉16 · ⭐ 340 · 💤) - spaCy plugin for Transformers , Udify, ELmo, etc. Apache-2 spacy +
Camphr (🥉16 · ⭐ 340 · 💤) - 适用于Transformers,Udify,ELmo等的spaCy插件。Apache-2 spacy - [GitHub](https://github.com/PKSHATechnology-Research/camphr) (👨‍💻 7 · 🔀 16 · 📋 28 - 7% open · ⏱️ 18.08.2021): @@ -2503,7 +2503,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install camphr ```
-
textpipe (🥉16 · ⭐ 300 · 💀) - Textpipe: clean and extract metadata from text. MIT +
textpipe (🥉16 · ⭐ 300 · 💀) - Textpipe:从文本中清理并提取元数据。MIT - [GitHub](https://github.com/textpipe/textpipe) (👨‍💻 28 · 🔀 23 · 📦 8 · 📋 40 - 37% open · ⏱️ 09.06.2021): @@ -2515,7 +2515,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install textpipe ```
-
NeuroNER (🥉15 · ⭐ 1.6K · 💀) - Named-entity recognition using neural networks. Easy-to-use and.. MIT +
NeuroNER (🥉15 · ⭐ 1.6K · 💀) - 使用神经网络的命名实体识别。MIT - [GitHub](https://github.com/Franck-Dernoncourt/NeuroNER) (👨‍💻 7 · 🔀 460 · 📋 150 - 55% open · ⏱️ 02.10.2019): @@ -2527,7 +2527,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install pyneuroner ```
-
Translate (🥉15 · ⭐ 760) - Translate - a PyTorch Language Library. BSD-3 +
Translate (🥉15 · ⭐ 760) - Translate-PyTorch NLP库。BSD-3 - [GitHub](https://github.com/pytorch/translate) (👨‍💻 87 · 🔀 180 · 📋 38 - 28% open · ⏱️ 10.06.2022): @@ -2539,7 +2539,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install pytorch-translate ```
-
NeuralQA (🥉15 · ⭐ 220 · 💀) - NeuralQA: A Usable Library for Question Answering on Large Datasets.. MIT +
NeuralQA (🥉15 · ⭐ 220 · 💀) - NeuralQA:用于对大型数据集进行问答构建。MIT - [GitHub](https://github.com/victordibia/neuralqa) (👨‍💻 3 · 🔀 30 · 📦 4 · 📋 28 - 71% open · ⏱️ 16.12.2020): @@ -2551,7 +2551,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install neuralqa ```
-
OpenNRE (🥉14 · ⭐ 3.8K) - An Open-Source Package for Neural Relation Extraction (NRE). MIT +
OpenNRE (🥉14 · ⭐ 3.8K) - 神经关系提取(NRE)的开源软件包。MIT - [GitHub](https://github.com/thunlp/OpenNRE) (👨‍💻 10 · 🔀 950 · 📋 350 - 2% open · ⏱️ 06.04.2022): @@ -2559,7 +2559,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we git clone https://github.com/thunlp/OpenNRE ```
-
TransferNLP (🥉14 · ⭐ 290 · 💀) - NLP library designed for reproducible experimentation.. MIT +
TransferNLP (🥉14 · ⭐ 290 · 💀) - 用于可重复的实验的NLP库。MIT - [GitHub](https://github.com/feedly/transfer-nlp) (👨‍💻 7 · 🔀 17 · 📋 23 - 13% open · ⏱️ 28.05.2020): @@ -2571,7 +2571,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install transfer-nlp ```
-
ONNX-T5 (🥉14 · ⭐ 200 · 💀) - Summarization, translation, sentiment-analysis, text-generation.. Apache-2 +
ONNX-T5 (🥉14 · ⭐ 200 · 💀) - 文本摘要,翻译,情感分析,文本生成等实现。Apache-2 - [GitHub](https://github.com/abelriboulot/onnxt5) (👨‍💻 3 · 🔀 23 · 📦 1 · 📋 15 - 46% open · ⏱️ 28.01.2021): @@ -2583,7 +2583,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install onnxt5 ```
-
textvec (🥉14 · ⭐ 180) - Text vectorization tool to outperform TFIDF for classification tasks. MIT +
textvec (🥉14 · ⭐ 180) - 胜过TF-IDF文本向量化工具。MIT - [GitHub](https://github.com/textvec/textvec) (👨‍💻 10 · 🔀 23 · 📦 4 · 📋 9 - 33% open · ⏱️ 05.07.2022): @@ -2595,7 +2595,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install textvec ```
-
VizSeq (🥉13 · ⭐ 400) - An Analysis Toolkit for Natural Language Generation (Translation,.. MIT +
VizSeq (🥉13 · ⭐ 400) - 用于自然语言生成的分析工具包。MIT - [GitHub](https://github.com/facebookresearch/vizseq) (👨‍💻 3 · 🔀 49 · 📦 6 · 📋 15 - 40% open · ⏱️ 20.07.2022): @@ -2607,7 +2607,7 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we pip install vizseq ```
-
Headliner (🥉11 · ⭐ 230 · 💀) - Easy training and deployment of seq2seq models. ❗Unlicensed +
Headliner (🥉11 · ⭐ 230 · 💀) - 轻松训练和部署seq2seq模型。❗Unlicensed - [GitHub](https://github.com/as-ideas/headliner) (👨‍💻 2 · 🔀 41 · 📦 3 · 📋 14 - 7% open · ⏱️ 14.02.2020): @@ -2621,13 +2621,13 @@ _Libraries for processing, cleaning, manipulating, and analyzing text data as we

-## Image Data +## 图像数据与CV -Back to top +Back to top -_Libraries for image & video processing, manipulation, and augmentation as well as libraries for computer vision tasks such as facial recognition, object detection, and classification._ +_用于图像和视频处理,操纵和扩充的库,以及用于计算机视觉任务(例如面部识别,对象检测和图像分类)的库。_ -
Pillow (🥇36 · ⭐ 10K · 📈) - The friendly PIL fork (Python Imaging Library). ❗️PIL +
Pillow (🥇36 · ⭐ 10K · 📈) - 友好的PIL分支(Python Imaging Library)。❗️PIL - [GitHub](https://github.com/python-pillow/Pillow) (👨‍💻 410 · 🔀 1.7K · 📦 820K · 📋 2.6K - 3% open · ⏱️ 25.08.2022): @@ -2643,7 +2643,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge pillow ```
-
MoviePy (🥇34 · ⭐ 9.5K) - Video editing with Python. MIT +
MoviePy (🥇34 · ⭐ 9.5K) - 使用Python进行视频编辑。MIT - [GitHub](https://github.com/Zulko/moviepy) (👨‍💻 150 · 🔀 1.2K · 📦 18K · 📋 1.2K - 24% open · ⏱️ 01.06.2022): @@ -2659,7 +2659,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge moviepy ```
-
imageio (🥇33 · ⭐ 1.1K) - Python library for reading and writing image data. BSD-2 +
imageio (🥇33 · ⭐ 1.1K) - 用于读取和写入图像数据的Python库。BSD-2 - [GitHub](https://github.com/imageio/imageio) (👨‍💻 91 · 🔀 220 · 📥 360 · 📦 67K · 📋 470 - 12% open · ⏱️ 24.08.2022): @@ -2675,7 +2675,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge imageio ```
-
imgaug (🥇32 · ⭐ 13K · 💀) - Image augmentation for machine learning experiments. MIT +
imgaug (🥇32 · ⭐ 13K · 💀) - 用于机器学习实验的图像增强。MIT - [GitHub](https://github.com/aleju/imgaug) (👨‍💻 36 · 🔀 2.3K · 📦 11K · 📋 490 - 55% open · ⏱️ 01.06.2020): @@ -2691,7 +2691,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge imgaug ```
-
Albumentations (🥇32 · ⭐ 11K) - Fast image augmentation library and an easy-to-use wrapper.. MIT +
Albumentations (🥇32 · ⭐ 11K) - 快速的图像增强库和易于使用的包装器。MIT - [GitHub](https://github.com/albumentations-team/albumentations) (👨‍💻 110 · 🔀 1.4K · 📦 9.1K · 📋 660 - 41% open · ⏱️ 24.08.2022): @@ -2707,7 +2707,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge albumentations ```
-
Kornia (🥇32 · ⭐ 7K) - Open Source Differentiable Computer Vision Library for PyTorch. Apache-2 +
Kornia (🥇32 · ⭐ 7K) - PyTorch的开源可微分计算机视觉库。Apache-2 - [GitHub](https://github.com/kornia/kornia) (👨‍💻 170 · 🔀 680 · 📥 430 · 📦 1.7K · 📋 600 - 26% open · ⏱️ 24.08.2022): @@ -2719,7 +2719,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install kornia ```
-
scikit-image (🥇32 · ⭐ 5K) - Image processing in Python. ❗Unlicensed +
scikit-image (🥇32 · ⭐ 5K) - Python中的图像处理。❗Unlicensed - [GitHub](https://github.com/scikit-image/scikit-image) (👨‍💻 560 · 🔀 2K · 📦 110K · 📋 2.3K - 19% open · ⏱️ 23.08.2022): @@ -2735,7 +2735,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge scikit-image ```
-
Wand (🥇32 · ⭐ 1.2K) - The ctypes-based simple ImageMagick binding for Python. MIT +
Wand (🥇32 · ⭐ 1.2K) - 用于Python的基于ctypes的简单ImageMagick接口。MIT - [GitHub](https://github.com/emcconville/wand) (👨‍💻 100 · 🔀 190 · 📥 8.5K · 📦 12K · 📋 380 - 4% open · ⏱️ 22.08.2022): @@ -2747,7 +2747,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install wand ```
-
PyTorch Image Models (🥈31 · ⭐ 21K) - PyTorch image models, scripts, pretrained weights --.. Apache-2 +
PyTorch Image Models (🥈31 · ⭐ 21K) - PyTorch图像模型,脚本,预训练权重。Apache-2 - [GitHub](https://github.com/rwightman/pytorch-image-models) (👨‍💻 79 · 🔀 3.3K · 📥 1.7M · 📦 4.3K · 📋 570 - 9% open · ⏱️ 24.08.2022): @@ -2755,7 +2755,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well git clone https://github.com/rwightman/pytorch-image-models ```
-
GluonCV (🥈29 · ⭐ 5.3K) - Gluon CV Toolkit. Apache-2 +
GluonCV (🥈29 · ⭐ 5.3K) - Gluon CV工具包。Apache-2 - [GitHub](https://github.com/dmlc/gluon-cv) (👨‍💻 120 · 🔀 1.2K · 📦 840 · 📋 810 - 5% open · ⏱️ 11.08.2022): @@ -2767,7 +2767,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install gluoncv ```
-
ImageHash (🥈29 · ⭐ 2.5K · 💤) - A Python Perceptual Image Hashing Module. BSD-2 +
ImageHash (🥈29 · ⭐ 2.5K · 💤) - Python感知图像哈希模块。BSD-2 - [GitHub](https://github.com/JohannesBuchner/imagehash) (👨‍💻 20 · 🔀 300 · 📦 5.8K · 📋 110 - 13% open · ⏱️ 07.09.2021): @@ -2783,7 +2783,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge imagehash ```
-
imutils (🥈28 · ⭐ 4.2K · 💤) - A series of convenience functions to make basic image processing.. MIT +
imutils (🥈28 · ⭐ 4.2K · 💤) - 图像处理库。MIT - [GitHub](https://github.com/PyImageSearch/imutils) (👨‍💻 21 · 🔀 980 · 📦 27K · 📋 160 - 53% open · ⏱️ 27.01.2022): @@ -2799,7 +2799,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge imutils ```
-
MMDetection (🥈27 · ⭐ 21K) - OpenMMLab Detection Toolbox and Benchmark. Apache-2 +
MMDetection (🥈27 · ⭐ 21K) - OpenMMLab检测工具箱。Apache-2 - [GitHub](https://github.com/open-mmlab/mmdetection) (👨‍💻 350 · 🔀 6.9K · 📦 550 · 📋 6.2K - 9% open · ⏱️ 28.07.2022): @@ -2807,7 +2807,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well git clone https://github.com/open-mmlab/mmdetection ```
-
torchvision (🥈27 · ⭐ 12K) - Datasets, Transforms and Models specific to Computer Vision. BSD-3 +
torchvision (🥈27 · ⭐ 12K) - 计算机视觉的数据集,转换和模型。BSD-3 - [GitHub](https://github.com/pytorch/vision) (👨‍💻 500 · 🔀 6K · 📥 11K · 📋 2.5K - 23% open · ⏱️ 25.08.2022): @@ -2823,7 +2823,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge torchvision ```
-
glfw (🥈27 · ⭐ 9.5K) - A multi-platform library for OpenGL, OpenGL ES, Vulkan, window and input. ❗️Zlib +
glfw (🥈27 · ⭐ 9.5K) - 一个用于OpenGL,Op​​enGL ES,Vulkan,窗口和输入的多平台库。❗️Zlib - [GitHub](https://github.com/glfw/glfw) (👨‍💻 180 · 🔀 3.5K · 📥 2.9M · 📦 1 · 📋 1.6K - 25% open · ⏱️ 22.08.2022): @@ -2839,7 +2839,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge glfw ```
-
InsightFace (🥈26 · ⭐ 12K) - Face Analysis Project on MXNet and PyTorch. MIT +
InsightFace (🥈26 · ⭐ 12K) - MXNet和PyTorch上的人脸分析项目。MIT - [GitHub](https://github.com/deepinsight/insightface) (👨‍💻 46 · 🔀 3.9K · 📦 180 · 📋 2K - 55% open · ⏱️ 19.08.2022): @@ -2851,7 +2851,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install insightface ```
-
imageai (🥈26 · ⭐ 7.2K · 💀) - A python library built to empower developers to build applications.. MIT +
imageai (🥈26 · ⭐ 7.2K · 💀) - python库旨在使开发人员能够构建应用程序。MIT - [GitHub](https://github.com/OlafenwaMoses/ImageAI) (👨‍💻 15 · 🔀 1.9K · 📥 780K · 📦 1.2K · 📋 690 - 37% open · ⏱️ 08.05.2021): @@ -2863,7 +2863,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install imageai ```
-
Face Recognition (🥈25 · ⭐ 46K) - The world's simplest facial recognition api for.. MIT +
Face Recognition (🥈25 · ⭐ 46K) - 简单的面部识别API。MIT - [GitHub](https://github.com/ageitgey/face_recognition) (👨‍💻 54 · 🔀 12K · 📥 470 · 📋 1.2K - 53% open · ⏱️ 10.06.2022): @@ -2875,7 +2875,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install face_recognition ```
-
detectron2 (🥈25 · ⭐ 22K) - Detectron2 is FAIR's next-generation platform for object.. Apache-2 +
detectron2 (🥈25 · ⭐ 22K) - Detectron2是Facebook FAIR的高级目标检测平台。Apache-2 - [GitHub](https://github.com/facebookresearch/detectron2) (👨‍💻 210 · 🔀 5.7K · 📦 710 · 📋 3.1K - 7% open · ⏱️ 24.08.2022): @@ -2887,7 +2887,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge detectron2 ```
-
vit-pytorch (🥈25 · ⭐ 11K) - Implementation of Vision Transformer, a simple way to.. MIT +
vit-pytorch (🥈25 · ⭐ 11K) - 实现视觉transformer,一种简单的方法。MIT - [GitHub](https://github.com/lucidrains/vit-pytorch) (👨‍💻 15 · 🔀 1.8K · 📦 140 · 📋 190 - 47% open · ⏱️ 27.07.2022): @@ -2899,7 +2899,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install vit-pytorch ```
-
facenet-pytorch (🥈25 · ⭐ 3K · 💤) - Pretrained Pytorch face detection (MTCNN) and.. MIT +
facenet-pytorch (🥈25 · ⭐ 3K · 💤) - 预训练的Pytorch人脸检测(MTCNN)和识别。MIT - [GitHub](https://github.com/timesler/facenet-pytorch) (👨‍💻 14 · 🔀 650 · 📥 390K · 📦 850 · 📋 150 - 39% open · ⏱️ 13.12.2021): @@ -2911,7 +2911,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install facenet-pytorch ```
-
opencv-python (🥈25 · ⭐ 2.9K · 📈) - Automated CI toolchain to produce precompiled opencv-python,.. MIT +
opencv-python (🥈25 · ⭐ 2.9K · 📈) - 自动化的CI工具链可生成预编译的opencv-python。MIT - [GitHub](https://github.com/opencv/opencv-python) (👨‍💻 39 · 🔀 580 · 📋 570 - 7% open · ⏱️ 22.08.2022): @@ -2923,7 +2923,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install opencv-python ```
-
chainercv (🥈25 · ⭐ 1.5K · 💀) - ChainerCV: a Library for Deep Learning in Computer Vision. MIT +
chainercv (🥈25 · ⭐ 1.5K · 💀) - ChainerCV:一个用于计算机视觉深度学习的库。MIT - [GitHub](https://github.com/chainer/chainercv) (👨‍💻 39 · 🔀 300 · 📦 300 · 📋 200 - 18% open · ⏱️ 07.01.2020): @@ -2935,7 +2935,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install chainercv ```
-
mahotas (🥈25 · ⭐ 770) - Computer Vision in Python. ❗Unlicensed +
mahotas (🥈25 · ⭐ 770) - Python中的计算机视觉。❗Unlicensed - [GitHub](https://github.com/luispedro/mahotas) (👨‍💻 32 · 🔀 140 · 📦 870 · 📋 79 - 20% open · ⏱️ 28.06.2022): @@ -2951,7 +2951,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge mahotas ```
-
vidgear (🥉24 · ⭐ 2.4K) - High-performance cross-platform Video Processing Python framework.. Apache-2 +
vidgear (🥉24 · ⭐ 2.4K) - 高性能跨平台视频处理Python框架。Apache-2 - [GitHub](https://github.com/abhiTronix/vidgear) (👨‍💻 13 · 🔀 190 · 📥 640 · 📦 230 · 📋 230 - 1% open · ⏱️ 06.07.2022): @@ -2963,7 +2963,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install vidgear ```
-
PyTorch3D (🥉23 · ⭐ 6.4K) - PyTorch3D is FAIR's library of reusable components for.. ❗Unlicensed +
PyTorch3D (🥉23 · ⭐ 6.4K) - PyTorch3D是FAIR的深度学习可重用组件库。❗Unlicensed - [GitHub](https://github.com/facebookresearch/pytorch3d) (👨‍💻 96 · 🔀 940 · 📦 270 · 📋 1.1K - 7% open · ⏱️ 25.08.2022): @@ -2979,7 +2979,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c pytorch3d pytorch3d ```
-
Face Alignment (🥉23 · ⭐ 5.8K · 💤) - 2D and 3D Face alignment library build using pytorch. BSD-3 +
Face Alignment (🥉23 · ⭐ 5.8K · 💤) - 使用pytorch构建2D和3D人脸对齐库。BSD-3 - [GitHub](https://github.com/1adrianb/face-alignment) (👨‍💻 23 · 🔀 1.2K · 📋 280 - 21% open · ⏱️ 04.08.2021): @@ -2991,7 +2991,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install face-alignment ```
-
Augmentor (🥉23 · ⭐ 4.8K) - Image augmentation library in Python for machine learning. MIT +
Augmentor (🥉23 · ⭐ 4.8K) - Python中的图像增强库,用于机器学习。MIT - [GitHub](https://github.com/mdbloice/Augmentor) (👨‍💻 22 · 🔀 820 · 📦 480 · 📋 190 - 61% open · ⏱️ 24.05.2022): @@ -3003,7 +3003,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install Augmentor ```
-
mtcnn (🥉23 · ⭐ 1.8K · 💀) - MTCNN face detection implementation for TensorFlow, as a PIP.. MIT +
mtcnn (🥉23 · ⭐ 1.8K · 💀) - TensorFlow的MTCNN人脸检测实现。MIT - [GitHub](https://github.com/ipazc/mtcnn) (👨‍💻 15 · 🔀 460 · 📦 2.6K · 📋 100 - 62% open · ⏱️ 09.07.2021): @@ -3015,7 +3015,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install mtcnn ```
-
lightly (🥉23 · ⭐ 1.7K) - A python library for self-supervised learning on images. MIT +
lightly (🥉23 · ⭐ 1.7K) - 一个用于对图像进行自监督学习的python库。MIT - [GitHub](https://github.com/lightly-ai/lightly) (👨‍💻 19 · 🔀 140 · 📦 46 · 📋 330 - 20% open · ⏱️ 25.08.2022): @@ -3027,7 +3027,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install lightly ```
-
Image Deduplicator (🥉22 · ⭐ 4.1K · 💀) - Finding duplicate images made easy!. Apache-2 +
Image Deduplicator (🥉22 · ⭐ 4.1K · 💀) - 图像查重。Apache-2 - [GitHub](https://github.com/idealo/imagededup) (👨‍💻 10 · 🔀 370 · 📦 26 · 📋 93 - 36% open · ⏱️ 23.11.2020): @@ -3039,7 +3039,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install imagededup ```
-
pyvips (🥉22 · ⭐ 440) - python binding for libvips using cffi. MIT +
pyvips (🥉22 · ⭐ 440) - 使用cffi的libvips的python接口。MIT - [GitHub](https://github.com/libvips/pyvips) (👨‍💻 14 · 🔀 40 · 📦 350 · 📋 300 - 36% open · ⏱️ 13.08.2022): @@ -3055,7 +3055,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge pyvips ```
-
PaddleDetection (🥉21 · ⭐ 8.3K) - Object detection and instance segmentation toolkit.. Apache-2 +
PaddleDetection (🥉21 · ⭐ 8.3K) - 对象检测和实例分割工具箱。Apache-2 - [GitHub](https://github.com/PaddlePaddle/PaddleDetection) (👨‍💻 100 · 🔀 2.1K · 📦 30 · 📋 3.8K - 20% open · ⏱️ 16.08.2022): @@ -3075,7 +3075,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install segmentation_models ```
-
Image Super-Resolution (🥉21 · ⭐ 3.8K · 💀) - Super-scale your images and run experiments with.. Apache-2 +
Image Super-Resolution (🥉21 · ⭐ 3.8K · 💀) - 图像超精度变换。Apache-2 - [GitHub](https://github.com/idealo/image-super-resolution) (👨‍💻 10 · 🔀 630 · 📦 97 · 📋 200 - 45% open · ⏱️ 02.06.2021): @@ -3091,7 +3091,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well docker pull idealo/image-super-resolution-gpu ```
-
Norfair (🥉21 · ⭐ 1.6K) - Lightweight Python library for adding real-time 2D object tracking to.. BSD-3 +
Norfair (🥉21 · ⭐ 1.6K) - 轻量级Python库,用于向其中添加实时2D对象跟踪。BSD-3 - [GitHub](https://github.com/tryolabs/norfair) (👨‍💻 18 · 🔀 150 · 📥 200 · 📋 75 - 16% open · ⏱️ 24.08.2022): @@ -3103,7 +3103,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install norfair ```
-
CellProfiler (🥉21 · ⭐ 700) - An open-source application for biological image analysis. ❗Unlicensed +
CellProfiler (🥉21 · ⭐ 700) - 生物图像分析的开源应用程序。❗Unlicensed - [GitHub](https://github.com/CellProfiler/CellProfiler) (👨‍💻 130 · 🔀 320 · 📥 3.4K · 📦 9 · 📋 3.1K - 5% open · ⏱️ 17.08.2022): @@ -3115,7 +3115,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install cellprofiler ```
-
MMF (🥉20 · ⭐ 5K) - A modular framework for vision & language multimodal research from.. BSD-3 +
MMF (🥉20 · ⭐ 5K) - 来自视觉和语言多模态研究的模块化框架。BSD-3 - [GitHub](https://github.com/facebookresearch/mmf) (👨‍💻 100 · 🔀 840 · 📦 12 · 📋 620 - 30% open · ⏱️ 11.08.2022): @@ -3127,7 +3127,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install mmf ```
-
tensorflow-graphics (🥉20 · ⭐ 2.7K) - TensorFlow Graphics: Differentiable Graphics Layers.. Apache-2 +
tensorflow-graphics (🥉20 · ⭐ 2.7K) - TensorFlow图神经网络:可微分的图layerApache-2 - [GitHub](https://github.com/tensorflow/graphics) (👨‍💻 36 · 🔀 340 · 📋 160 - 45% open · ⏱️ 04.04.2022): @@ -3139,7 +3139,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install tensorflow-graphics ```
-
nude.py (🥉20 · ⭐ 860 · 💀) - Nudity detection with Python. MIT +
nude.py (🥉20 · ⭐ 860 · 💀) - 使用Python进行裸露检测。MIT - [GitHub](https://github.com/hhatto/nude.py) (👨‍💻 12 · 🔀 130 · 📦 2.6K · 📋 10 - 70% open · ⏱️ 23.11.2020): @@ -3151,7 +3151,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install nudepy ```
-
Luminoth (🥉19 · ⭐ 2.4K · 💀) - Deep Learning toolkit for Computer Vision. BSD-3 +
Luminoth (🥉19 · ⭐ 2.4K · 💀) - 用于计算机视觉的深度学习工具包。BSD-3 - [GitHub](https://github.com/tryolabs/luminoth) (👨‍💻 15 · 🔀 400 · 📥 13K · 📦 41 · 📋 180 - 28% open · ⏱️ 07.01.2020): @@ -3163,7 +3163,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install luminoth ```
-
Classy Vision (🥉19 · ⭐ 1.5K) - An end-to-end PyTorch framework for image and video.. MIT +
Classy Vision (🥉19 · ⭐ 1.5K) - 用于图像和视频的端到端PyTorch框架。MIT - [GitHub](https://github.com/facebookresearch/ClassyVision) (👨‍💻 76 · 🔀 260 · 📋 76 - 17% open · ⏱️ 03.08.2022): @@ -3179,7 +3179,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well conda install -c conda-forge classy_vision ```
-
Caer (🥉18 · ⭐ 630 · 💤) - A lightweight Computer Vision library. Scale your models, not boilerplate. MIT +
Caer (🥉18 · ⭐ 630 · 💤) - 轻量级的计算机视觉库。MIT - [GitHub](https://github.com/jasmcaus/caer) (👨‍💻 8 · 🔀 74 · 📥 19 · 📋 15 - 13% open · ⏱️ 13.10.2021): @@ -3199,7 +3199,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well git clone https://github.com/facebookresearch/detr ```
-
Pillow-SIMD (🥉17 · ⭐ 1.9K · 💤) - The friendly PIL fork. ❗️PIL +
Pillow-SIMD (🥉17 · ⭐ 1.9K · 💤) - 友好的PIL fork。❗️PIL - [GitHub](https://github.com/uploadcare/pillow-simd) (👨‍💻 380 · 🔀 74 · 📋 77 - 14% open · ⏱️ 17.01.2022): @@ -3211,7 +3211,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install pillow-simd ```
-
PySlowFast (🥉16 · ⭐ 5K) - PySlowFast: video understanding codebase from FAIR for.. Apache-2 +
PySlowFast (🥉16 · ⭐ 5K) - PySlowFast:来自FAIR的视频理解代码库。Apache-2 - [GitHub](https://github.com/facebookresearch/SlowFast) (👨‍💻 28 · 🔀 960 · 📦 10 · 📋 550 - 52% open · ⏱️ 25.08.2022): @@ -3219,7 +3219,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well git clone https://github.com/facebookresearch/SlowFast ```
-
image-match (🥉16 · ⭐ 2.8K · 💤) - Quickly search over billions of images. ❗Unlicensed +
image-match (🥉16 · ⭐ 2.8K · 💤) - 快速搜索数十亿张图像。❗Unlicensed - [GitHub](https://github.com/ProvenanceLabs/image-match) (👨‍💻 19 · 🔀 380 · 📋 100 - 53% open · ⏱️ 21.09.2021): @@ -3231,7 +3231,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well pip install image_match ```
-
pycls (🥉15 · ⭐ 2K) - Codebase for Image Classification Research, written in PyTorch. MIT +
pycls (🥉15 · ⭐ 2K) - 用PyTorch编写的图像分类研究代码库。MIT - [GitHub](https://github.com/facebookresearch/pycls) (👨‍💻 17 · 🔀 230 · 📦 6 · 📋 78 - 28% open · ⏱️ 12.07.2022): @@ -3239,7 +3239,7 @@ _Libraries for image & video processing, manipulation, and augmentation as well git clone https://github.com/facebookresearch/pycls ```
-
Torch Points 3D (🥉14 · ⭐ 93 · 💤) - Pytorch framework for doing deep learning on point.. BSD-3 +
Torch Points 3D (🥉14 · ⭐ 93 · 💤) - 用于在点云上进行深度学习的Pytorch框架。BSD-3 - [GitHub](https://github.com/nicolas-chaulet/torch-points3d) (👨‍💻 29 · 🔀 19 · ⏱️ 10.12.2021): @@ -3253,13 +3253,13 @@ _Libraries for image & video processing, manipulation, and augmentation as well

-## Graph Data +## 图数据处理 -Back to top +Back to top -_Libraries for graph processing, clustering, embedding, and machine learning tasks._ +_用于图数据处理,聚类,图嵌入和机器学习任务的库。_ -
networkx (🥇32 · ⭐ 11K) - Network Analysis in Python. ❗Unlicensed +
networkx (🥇32 · ⭐ 11K) - Python中的网络分析。❗Unlicensed - [GitHub](https://github.com/networkx/networkx) (👨‍💻 610 · 🔀 2.6K · 📥 60 · 📦 120K · 📋 2.8K - 5% open · ⏱️ 23.08.2022): @@ -3275,7 +3275,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas conda install -c conda-forge networkx ```
-
dgl (🥇29 · ⭐ 10K) - Python package built to ease deep learning on graph, on top of existing.. Apache-2 +
dgl (🥇29 · ⭐ 10K) - 在现有基础之上构建的Python软件包,用于简化图上的深度学习。Apache-2 - [GitHub](https://github.com/dmlc/dgl) (👨‍💻 230 · 🔀 2.4K · 📦 30 · 📋 1.7K - 13% open · ⏱️ 25.08.2022): @@ -3287,7 +3287,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install dgl ```
-
PyTorch Geometric (🥇28 · ⭐ 15K) - Geometric Deep Learning Extension Library for PyTorch. MIT +
PyTorch Geometric (🥇28 · ⭐ 15K) - PyTorch的几何深度学习扩展库。MIT - [GitHub](https://github.com/pyg-team/pytorch_geometric) (👨‍💻 300 · 🔀 2.7K · 📋 2.6K - 35% open · ⏱️ 25.08.2022): @@ -3299,7 +3299,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install torch-geometric ```
-
ogb (🥇28 · ⭐ 1.4K) - Benchmark datasets, data loaders, and evaluators for graph machine learning. MIT +
ogb (🥇28 · ⭐ 1.4K) - 用于图机器学习的基准数据集,数据加载器和评估器。MIT - [GitHub](https://github.com/snap-stanford/ogb) (👨‍💻 23 · 🔀 310 · 📦 380 · 📋 230 - 0% open · ⏱️ 22.08.2022): @@ -3311,7 +3311,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install ogb ```
-
igraph (🥈27 · ⭐ 1K) - Python interface for igraph. ❗️GPL-2.0 +
igraph (🥈27 · ⭐ 1K) - Igraph的Python接口。❗️GPL-2.0 - [GitHub](https://github.com/igraph/python-igraph) (👨‍💻 61 · 🔀 220 · 📥 460K · 📦 850 · 📋 410 - 9% open · ⏱️ 24.08.2022): @@ -3327,7 +3327,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas conda install -c conda-forge igraph ```
-
StellarGraph (🥈25 · ⭐ 2.5K · 💤) - StellarGraph - Machine Learning on Graphs. Apache-2 +
StellarGraph (🥈25 · ⭐ 2.5K · 💤) - StellarGraph-图机器学习库。Apache-2 - [GitHub](https://github.com/stellargraph/stellargraph) (👨‍💻 36 · 🔀 380 · 📦 160 · 📋 1K - 27% open · ⏱️ 29.10.2021): @@ -3339,7 +3339,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install stellargraph ```
-
Spektral (🥈25 · ⭐ 2.1K) - Graph Neural Networks with Keras and Tensorflow 2. MIT +
Spektral (🥈25 · ⭐ 2.1K) - 使用Keras和Tensorflow 2的图神经网络。MIT - [GitHub](https://github.com/danielegrattarola/spektral) (👨‍💻 24 · 🔀 300 · 📦 140 · 📋 230 - 16% open · ⏱️ 22.07.2022): @@ -3351,7 +3351,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install spektral ```
-
Karate Club (🥈23 · ⭐ 1.7K) - Karate Club: An API Oriented Open-source Python Framework for.. ❗️GPL-3.0 +
Karate Club (🥈23 · ⭐ 1.7K) - 面向API的开源Python框架。❗️GPL-3.0 - [GitHub](https://github.com/benedekrozemberczki/karateclub) (👨‍💻 15 · 🔀 210 · 📦 100 · ⏱️ 20.08.2022): @@ -3375,7 +3375,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install torch-geometric-temporal ```
-
AmpliGraph (🥈22 · ⭐ 1.8K · 💀) - Python library for Representation Learning on Knowledge.. Apache-2 +
AmpliGraph (🥈22 · ⭐ 1.8K · 💀) - 用于知识表示学习的Python库。Apache-2 - [GitHub](https://github.com/Accenture/AmpliGraph) (👨‍💻 19 · 🔀 210 · 📦 25 · 📋 210 - 12% open · ⏱️ 25.05.2021): @@ -3387,7 +3387,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install ampligraph ```
-
Paddle Graph Learning (🥈22 · ⭐ 1.4K) - Paddle Graph Learning (PGL) is an efficient and.. Apache-2 +
Paddle Graph Learning (🥈22 · ⭐ 1.4K) - paddle图机器学习。Apache-2 - [GitHub](https://github.com/PaddlePaddle/PGL) (👨‍💻 28 · 🔀 270 · 📦 33 · 📋 150 - 35% open · ⏱️ 22.08.2022): @@ -3399,7 +3399,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install pgl ```
-
pygal (🥈21 · ⭐ 2.5K · 💤) - PYthon svg GrAph plotting Library. ❗️LGPL-3.0 +
pygal (🥈21 · ⭐ 2.5K · 💤) - PYthon svg GrAph绘图库。❗️LGPL-3.0 - [GitHub](https://github.com/Kozea/pygal) (👨‍💻 71 · 🔀 390 · 📋 400 - 39% open · ⏱️ 24.11.2021): @@ -3415,7 +3415,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas conda install -c conda-forge pygal ```
-
PyKEEN (🥈21 · ⭐ 960) - A Python library for learning and evaluating knowledge graph embeddings. MIT +
PyKEEN (🥈21 · ⭐ 960) - 一个用于学习和评估知识图嵌入的Python库。MIT - [GitHub](https://github.com/pykeen/pykeen) (👨‍💻 31 · 🔀 130 · 📥 140 · 📋 420 - 13% open · ⏱️ 25.08.2022): @@ -3427,7 +3427,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install pykeen ```
-
Node2Vec (🥈21 · ⭐ 950) - Implementation of the node2vec algorithm. MIT +
Node2Vec (🥈21 · ⭐ 950) - node2vec算法的实现。MIT - [GitHub](https://github.com/eliorc/node2vec) (👨‍💻 11 · 🔀 200 · ⏱️ 01.08.2022): @@ -3443,7 +3443,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas conda install -c conda-forge node2vec ```
-
torch-cluster (🥈21 · ⭐ 560) - PyTorch Extension Library of Optimized Graph Cluster.. MIT +
torch-cluster (🥈21 · ⭐ 560) - 优化图聚类的PyTorch扩展库MIT - [GitHub](https://github.com/rusty1s/pytorch_cluster) (👨‍💻 25 · 🔀 100 · 📋 110 - 17% open · ⏱️ 22.08.2022): @@ -3455,7 +3455,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install torch-cluster ```
-
PyTorch-BigGraph (🥉19 · ⭐ 3.1K) - Generate embeddings from large-scale graph-structured.. ❗Unlicensed +
PyTorch-BigGraph (🥉19 · ⭐ 3.1K) - 从大型图网络结构生成embedding嵌入。❗Unlicensed - [GitHub](https://github.com/facebookresearch/PyTorch-BigGraph) (👨‍💻 27 · 🔀 410 · 📥 140 · 📋 190 - 26% open · ⏱️ 05.07.2022): @@ -3467,7 +3467,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install torchbiggraph ```
-
DeepWalk (🥉19 · ⭐ 2.5K · 💀) - DeepWalk - Deep Learning for Graphs. ❗Unlicensed +
DeepWalk (🥉19 · ⭐ 2.5K · 💀) - DeepWalk-图的深度学习。❗Unlicensed - [GitHub](https://github.com/phanein/deepwalk) (👨‍💻 10 · 🔀 810 · 📦 56 · 📋 110 - 24% open · ⏱️ 02.04.2020): @@ -3479,7 +3479,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install deepwalk ```
-
kglib (🥉17 · ⭐ 520) - Grakn Knowledge Graph Library (ML R&D). Apache-2 +
kglib (🥉17 · ⭐ 520) - Grakn知识图库(ML R&D)。Apache-2 - [GitHub](https://github.com/vaticle/typedb-ml) (👨‍💻 9 · 🔀 88 · 📥 210 · 📋 60 - 16% open · ⏱️ 01.08.2022): @@ -3491,7 +3491,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install grakn-kglib ```
-
GraphEmbedding (🥉16 · ⭐ 3K) - Implementation and experiments of graph embedding algorithms. MIT +
GraphEmbedding (🥉16 · ⭐ 3K) - 图嵌入算法的实现和实验。MIT - [GitHub](https://github.com/shenweichen/GraphEmbedding) (👨‍💻 9 · 🔀 860 · 📦 21 · 📋 57 - 59% open · ⏱️ 21.06.2022): @@ -3499,7 +3499,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas git clone https://github.com/shenweichen/GraphEmbedding ```
-
graph-nets (🥉15 · ⭐ 5.2K · 💀) - Build Graph Nets in Tensorflow. Apache-2 +
graph-nets (🥉15 · ⭐ 5.2K · 💀) - 在Tensorflow中构建图神经网络。Apache-2 - [GitHub](https://github.com/deepmind/graph_nets) (👨‍💻 10 · 🔀 770 · 📋 120 - 2% open · ⏱️ 04.12.2020): @@ -3511,7 +3511,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install graph-nets ```
-
Euler (🥉15 · ⭐ 2.8K · 💀) - A distributed graph deep learning framework. Apache-2 +
Euler (🥉15 · ⭐ 2.8K · 💀) - 分布式图深度学习框架。Apache-2 - [GitHub](https://github.com/alibaba/euler) (👨‍💻 3 · 🔀 550 · 📋 320 - 67% open · ⏱️ 29.07.2020): @@ -3523,7 +3523,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install euler-gl ```
-
DeepGraph (🥉15 · ⭐ 260 · 💀) - Analyze Data with Pandas-based Networks... ❗Unlicensed +
DeepGraph (🥉15 · ⭐ 260 · 💀) - 使用基于pandas的网络分析数据。❗Unlicensed - [GitHub](https://github.com/deepgraph/deepgraph) (👨‍💻 2 · 🔀 38 · 📦 5 · 📋 14 - 64% open · ⏱️ 14.06.2021): @@ -3539,7 +3539,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas conda install -c conda-forge deepgraph ```
-
pyRDF2Vec (🥉15 · ⭐ 160) - Python Implementation and Extension of RDF2Vec. MIT +
pyRDF2Vec (🥉15 · ⭐ 160) - RDF2Vec的Python实现和扩展。MIT - [GitHub](https://github.com/IBCNServices/pyRDF2Vec) (👨‍💻 6 · 🔀 32 · 📋 61 - 14% open · ⏱️ 06.05.2022): @@ -3551,7 +3551,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install pyrdf2vec ```
-
GraphSAGE (🥉14 · ⭐ 2.8K · 💀) - Representation learning on large graphs using stochastic.. MIT +
GraphSAGE (🥉14 · ⭐ 2.8K · 💀) - 大型图上的表示学习。MIT - [GitHub](https://github.com/williamleif/GraphSAGE) (👨‍💻 9 · 🔀 770 · 📋 160 - 62% open · ⏱️ 19.09.2018): @@ -3559,7 +3559,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas git clone https://github.com/williamleif/GraphSAGE ```
-
OpenNE (🥉14 · ⭐ 1.6K · 💀) - An Open-Source Package for Network Embedding (NE). MIT +
OpenNE (🥉14 · ⭐ 1.6K · 💀) - 神经关系提取(NRE)的开源软件包。MIT - [GitHub](https://github.com/thunlp/OpenNE) (👨‍💻 10 · 🔀 480 · 📋 97 - 1% open · ⏱️ 12.08.2019): @@ -3567,7 +3567,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas git clone https://github.com/thunlp/OpenNE ```
-
AutoGL (🥉14 · ⭐ 840) - An autoML framework & toolkit for machine learning on graphs. Apache-2 +
AutoGL (🥉14 · ⭐ 840) - 用于图上机器学习的autoML框架和工具包。Apache-2 - [GitHub](https://github.com/THUMNLab/AutoGL) (👨‍💻 13 · 🔀 98 · 📋 23 - 34% open · ⏱️ 19.04.2022): @@ -3579,7 +3579,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install auto-graph-learning ```
-
Sematch (🥉14 · ⭐ 400 · 💀) - semantic similarity framework for knowledge graph. Apache-2 +
Sematch (🥉14 · ⭐ 400 · 💀) - 知识图的语义相似性框架。Apache-2 - [GitHub](https://github.com/gsi-upm/sematch) (👨‍💻 5 · 🔀 100 · 📦 34 · 📋 33 - 42% open · ⏱️ 27.03.2019): @@ -3591,7 +3591,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas pip install sematch ```
-
GraphVite (🥉12 · ⭐ 1.1K · 💀) - GraphVite: A General and High-performance Graph Embedding.. Apache-2 +
GraphVite (🥉12 · ⭐ 1.1K · 💀) - GraphVite:通用的高性能图形嵌入系统。Apache-2 - [GitHub](https://github.com/DeepGraphLearning/graphvite) (🔀 140 · 📋 100 - 42% open · ⏱️ 14.01.2021): @@ -3603,7 +3603,7 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas conda install -c milagraph graphvite ```
-
OpenKE (🥉11 · ⭐ 3.2K · 💀) - An Open-Source Package for Knowledge Embedding (KE). ❗Unlicensed +
OpenKE (🥉11 · ⭐ 3.2K · 💀) - 神经关系提取(NRE)的开源软件包。❗Unlicensed - [GitHub](https://github.com/thunlp/OpenKE) (👨‍💻 10 · 🔀 900 · 📋 350 - 1% open · ⏱️ 06.04.2021): @@ -3613,13 +3613,13 @@ _Libraries for graph processing, clustering, embedding, and machine learning tas

-## Audio Data +## 音频处理 -Back to top +Back to top -_Libraries for audio analysis, manipulation, transformation, and extraction, as well as speech recognition and music generation tasks._ +_用于音频分析,处理,转换和提取以及语音识别和音乐生成任务的库。_ -
DeepSpeech (🥇30 · ⭐ 20K · 💤) - DeepSpeech is an open source embedded (offline, on-.. MPL-2.0 +
DeepSpeech (🥇30 · ⭐ 20K · 💤) - DeepSpeech是开源的语音转文本引擎。MPL-2.0 - [GitHub](https://github.com/mozilla/DeepSpeech) (👨‍💻 160 · 🔀 3.4K · 📥 880K · 📦 800 · 📋 2.1K - 5% open · ⏱️ 17.11.2021): @@ -3631,7 +3631,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install deepspeech ```
-
Pydub (🥇30 · ⭐ 6.3K) - Manipulate audio with a simple and easy high level interface. MIT +
Pydub (🥇30 · ⭐ 6.3K) - 使用简单易用的高级界面处理音频。MIT - [GitHub](https://github.com/jiaaro/pydub) (👨‍💻 92 · 🔀 840 · 📦 14K · 📋 490 - 46% open · ⏱️ 14.05.2022): @@ -3647,7 +3647,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as conda install -c conda-forge pydub ```
-
espnet (🥇29 · ⭐ 5.4K) - End-to-End Speech Processing Toolkit. Apache-2 +
espnet (🥇29 · ⭐ 5.4K) - 端到端语音处理工具包。Apache-2 - [GitHub](https://github.com/espnet/espnet) (👨‍💻 280 · 🔀 1.6K · 📥 76 · 📦 67 · 📋 1.9K - 15% open · ⏱️ 24.08.2022): @@ -3659,7 +3659,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install espnet ```
-
Magenta (🥈27 · ⭐ 18K) - Magenta: Music and Art Generation with Machine Intelligence. Apache-2 +
Magenta (🥈27 · ⭐ 18K) - 借助机器智能进行音乐和艺术创作。Apache-2 - [GitHub](https://github.com/magenta/magenta) (👨‍💻 150 · 🔀 3.5K · 📦 380 · 📋 890 - 34% open · ⏱️ 08.08.2022): @@ -3671,7 +3671,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install magenta ```
-
torchaudio (🥈27 · ⭐ 1.8K) - Data manipulation and transformation for audio signal.. BSD-2 +
torchaudio (🥈27 · ⭐ 1.8K) - 音频信号的数据处理和转换。BSD-2 - [GitHub](https://github.com/pytorch/audio) (👨‍💻 170 · 🔀 450 · 📋 640 - 20% open · ⏱️ 26.08.2022): @@ -3683,7 +3683,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install torchaudio ```
-
aubio (🥈26 · ⭐ 2.8K · 💤) - a library for audio and music analysis. ❗️GPL-3.0 +
aubio (🥈26 · ⭐ 2.8K · 💤) - 用于音频和音乐分析的库。❗️GPL-3.0 - [GitHub](https://github.com/aubio/aubio) (👨‍💻 24 · 🔀 340 · 📦 310 · 📋 310 - 41% open · ⏱️ 25.01.2022): @@ -3699,7 +3699,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as conda install -c conda-forge aubio ```
-
spleeter (🥈24 · ⭐ 20K) - Deezer source separation library including pretrained models. MIT +
spleeter (🥈24 · ⭐ 20K) - Deezer源分离库,包括预训练的模型。MIT - [GitHub](https://github.com/deezer/spleeter) (👨‍💻 19 · 🔀 2.2K · 📥 1.8M · 📋 680 - 21% open · ⏱️ 10.06.2022): @@ -3715,7 +3715,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as conda install -c conda-forge spleeter ```
-
SpeechRecognition (🥈24 · ⭐ 6.5K) - Speech recognition module for Python, supporting.. BSD-3 +
SpeechRecognition (🥈24 · ⭐ 6.5K) - 适用于Python的语音识别模块。BSD-3 - [GitHub](https://github.com/Uberi/speech_recognition) (👨‍💻 47 · 🔀 2K · 📋 510 - 44% open · ⏱️ 02.08.2022): @@ -3731,7 +3731,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as conda install -c conda-forge speechrecognition ```
-
pyAudioAnalysis (🥈24 · ⭐ 4.9K) - Python Audio Analysis Library: Feature Extraction,.. Apache-2 +
pyAudioAnalysis (🥈24 · ⭐ 4.9K) - Python音频分析库。Apache-2 - [GitHub](https://github.com/tyiannak/pyAudioAnalysis) (👨‍💻 26 · 🔀 1.1K · 📦 290 · 📋 290 - 59% open · ⏱️ 19.04.2022): @@ -3743,7 +3743,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install pyAudioAnalysis ```
-
Essentia (🥈24 · ⭐ 2.2K) - C++ library for audio and music analysis, description and.. ❗️AGPL-3.0 +
Essentia (🥈24 · ⭐ 2.2K) - C++库,用于音频和音乐分析,描述等。❗️AGPL-3.0 - [GitHub](https://github.com/MTG/essentia) (👨‍💻 74 · 🔀 460 · 📦 320 · 📋 950 - 36% open · ⏱️ 23.08.2022): @@ -3755,7 +3755,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install essentia ```
-
librosa (🥉23 · ⭐ 5.4K) - Python library for audio and music analysis. ISC +
librosa (🥉23 · ⭐ 5.4K) - 用于音频和音乐分析的Python库。ISC - [GitHub](https://github.com/librosa/librosa) (👨‍💻 110 · 🔀 810 · 📋 1K - 4% open · ⏱️ 25.08.2022): @@ -3771,7 +3771,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as conda install -c conda-forge librosa ```
-
tinytag (🥉23 · ⭐ 560) - Read music meta data and length of MP3, OGG, OPUS, MP4, M4A, FLAC, WMA and.. MIT +
tinytag (🥉23 · ⭐ 560) - 读取音乐元数据和MP3,OGG,OPUS,MP4,M4A,FLAC,WMA等的长度。MIT - [GitHub](https://github.com/devsnd/tinytag) (👨‍💻 22 · 🔀 88 · 📦 580 · 📋 93 - 12% open · ⏱️ 13.08.2022): @@ -3783,7 +3783,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install tinytag ```
-
kapre (🥉22 · ⭐ 850) - kapre: Keras Audio Preprocessors. MIT +
kapre (🥉22 · ⭐ 850) - kapre:Keras音频预处理器。MIT - [GitHub](https://github.com/keunwoochoi/kapre) (👨‍💻 13 · 🔀 140 · 📥 22 · 📦 1.8K · 📋 94 - 12% open · ⏱️ 04.07.2022): @@ -3795,7 +3795,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install kapre ```
-
Porcupine (🥉21 · ⭐ 2.8K) - On-device wake word detection powered by deep learning. Apache-2 +
Porcupine (🥉21 · ⭐ 2.8K) - 深度学习支持的设备上唤醒词识别。Apache-2 - [GitHub](https://github.com/Picovoice/porcupine) (👨‍💻 31 · 🔀 380 · 📦 9 · 📋 390 - 0% open · ⏱️ 26.08.2022): @@ -3807,7 +3807,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install pvporcupine ```
-
DDSP (🥉21 · ⭐ 2.2K) - DDSP: Differentiable Digital Signal Processing. Apache-2 +
DDSP (🥉21 · ⭐ 2.2K) - DDSP:微分数字信号处理。Apache-2 - [GitHub](https://github.com/magenta/ddsp) (👨‍💻 31 · 🔀 250 · 📦 28 · 📋 140 - 18% open · ⏱️ 16.05.2022): @@ -3819,7 +3819,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install ddsp ```
-
python-soundfile (🥉21 · ⭐ 470) - SoundFile is an audio library based on libsndfile, CFFI, and.. BSD-3 +
python-soundfile (🥉21 · ⭐ 470) - SoundFile是基于libsndfile,CFFI等的音频库。BSD-3 - [GitHub](https://github.com/bastibe/python-soundfile) (👨‍💻 24 · 🔀 75 · 📥 4K · 📋 170 - 39% open · ⏱️ 23.02.2022): @@ -3843,7 +3843,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install python_speech_features ```
-
TTS (🥉19 · ⭐ 6.2K · 💀) - Deep learning for Text to Speech (Discussion forum:.. MPL-2.0 +
TTS (🥉19 · ⭐ 6.2K · 💀) - 文本到语音的深度学习。MPL-2.0 - [GitHub](https://github.com/mozilla/TTS) (👨‍💻 56 · 🔀 930 · 📥 2.6K · 📋 540 - 0% open · ⏱️ 12.02.2021): @@ -3851,7 +3851,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as git clone https://github.com/mozilla/TTS ```
-
Dejavu (🥉19 · ⭐ 5.8K · 💀) - Audio fingerprinting and recognition in Python. MIT +
Dejavu (🥉19 · ⭐ 5.8K · 💀) - Python中的音频指纹识别。MIT - [GitHub](https://github.com/worldveil/dejavu) (👨‍💻 22 · 🔀 1.3K · 📦 23 · 📋 210 - 39% open · ⏱️ 03.06.2020): @@ -3863,7 +3863,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install PyDejavu ```
-
Madmom (🥉19 · ⭐ 950 · 💤) - Python audio and music signal processing library. ❗Unlicensed +
Madmom (🥉19 · ⭐ 950 · 💤) - Python音频和音乐信号处理库。❗Unlicensed - [GitHub](https://github.com/CPJKU/madmom) (👨‍💻 20 · 🔀 150 · 📦 210 · 📋 240 - 16% open · ⏱️ 06.01.2022): @@ -3875,7 +3875,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install madmom ```
-
audioread (🥉19 · ⭐ 410 · 📉) - cross-library (GStreamer + Core Audio + MAD + FFmpeg) audio.. MIT +
audioread (🥉19 · ⭐ 410 · 📉) - 跨库(GStreamer + Core Audio + MAD + FFmpeg)音频编解码。MIT - [GitHub](https://github.com/beetbox/audioread) (👨‍💻 22 · 🔀 94 · 📋 80 - 38% open · ⏱️ 12.08.2022): @@ -3891,7 +3891,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as conda install -c conda-forge audioread ```
-
Muda (🥉17 · ⭐ 210 · 💀) - A library for augmenting annotated audio data. ISC +
Muda (🥉17 · ⭐ 210 · 💀) - 用于扩充带注释的音频数据的库。ISC - [GitHub](https://github.com/bmcfee/muda) (👨‍💻 7 · 🔀 32 · 📦 15 · 📋 50 - 12% open · ⏱️ 03.05.2021): @@ -3903,7 +3903,7 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as pip install muda ```
-
Julius (🥉15 · ⭐ 280 · 💤) - Fast PyTorch based DSP for audio and 1D signals. MIT +
Julius (🥉15 · ⭐ 280 · 💤) - 基于PyTorch的快速DSP,用于音频和一维信号。MIT - [GitHub](https://github.com/adefossez/julius) (👨‍💻 2 · 🔀 18 · 📦 120 · ⏱️ 28.01.2022): @@ -3917,13 +3917,13 @@ _Libraries for audio analysis, manipulation, transformation, and extraction, as

-## Geospatial Data +## 地理Geo处理 -Back to top +Back to top -_Libraries to load, process, analyze, and write geographic data as well as libraries for spatial analysis, map visualization, and geocoding._ +_用于加载,处理,分析和写入geo地理数据的库,以及用于空间分析,地图可视化和地理编码的库。_ -
pydeck (🥇35 · ⭐ 10K) - WebGL2 powered geospatial visualization layers. MIT +
pydeck (🥇35 · ⭐ 10K) - WebGL2支持的地理空间可视化图层。MIT - [GitHub](https://github.com/visgl/deck.gl) (👨‍💻 200 · 🔀 1.7K · 📦 4.5K · 📋 2.5K - 5% open · ⏱️ 24.08.2022): @@ -3943,7 +3943,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra npm install deck.gl ```
-
geopy (🥇32 · ⭐ 3.7K) - Geocoding library for Python. MIT +
geopy (🥇32 · ⭐ 3.7K) - 适用于Python的地址解析库。MIT - [GitHub](https://github.com/geopy/geopy) (👨‍💻 130 · 🔀 580 · 📦 41K · 📋 260 - 7% open · ⏱️ 07.08.2022): @@ -3959,7 +3959,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge geopy ```
-
Shapely (🥇31 · ⭐ 2.9K) - Manipulation and analysis of geometric objects. BSD-3 +
Shapely (🥇31 · ⭐ 2.9K) - 操作和分析几何对象。BSD-3 - [GitHub](https://github.com/shapely/shapely) (👨‍💻 130 · 🔀 460 · 📥 220 · 📦 32K · 📋 910 - 17% open · ⏱️ 23.08.2022): @@ -3975,7 +3975,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge shapely ```
-
Geocoder (🥇31 · ⭐ 1.5K · 💀) - Python Geocoder. MIT +
Geocoder (🥇31 · ⭐ 1.5K · 💀) - Python Geocoder。MIT - [GitHub](https://github.com/DenisCarriere/geocoder) (👨‍💻 73 · 🔀 260 · 📦 5.3K · 📋 290 - 25% open · ⏱️ 12.10.2018): @@ -3991,7 +3991,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge geocoder ```
-
GeoPandas (🥈30 · ⭐ 3.3K) - Python tools for geographic data. BSD-3 +
GeoPandas (🥈30 · ⭐ 3.3K) - 用于地理数据的Python工具。BSD-3 - [GitHub](https://github.com/geopandas/geopandas) (👨‍💻 180 · 🔀 700 · 📥 1.6K · 📦 15K · 📋 1.3K - 26% open · ⏱️ 25.08.2022): @@ -4007,7 +4007,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge geopandas ```
-
ipyleaflet (🥈30 · ⭐ 1.3K) - A Jupyter - Leaflet.js bridge. MIT +
ipyleaflet (🥈30 · ⭐ 1.3K) - Jupyter-Leaflet.js桥。MIT - [GitHub](https://github.com/jupyter-widgets/ipyleaflet) (👨‍💻 80 · 🔀 320 · 📦 2.6K · 📋 500 - 36% open · ⏱️ 23.08.2022): @@ -4027,7 +4027,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra npm install jupyter-leaflet ```
-
Fiona (🥈30 · ⭐ 940) - Fiona reads and writes geographic data files. BSD-3 +
Fiona (🥈30 · ⭐ 940) - Fiona读写地理数据文件。BSD-3 - [GitHub](https://github.com/Toblerity/Fiona) (👨‍💻 66 · 🔀 170 · 📦 9.4K · 📋 680 - 10% open · ⏱️ 01.03.2022): @@ -4043,7 +4043,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge fiona ```
-
pyproj (🥈29 · ⭐ 780) - Python interface to PROJ (cartographic projections and coordinate.. MIT +
pyproj (🥈29 · ⭐ 780) - 与PROJ的Python界面(图形投影和坐标。MIT - [GitHub](https://github.com/pyproj4/pyproj) (👨‍💻 52 · 🔀 180 · 📦 16K · 📋 500 - 1% open · ⏱️ 26.08.2022): @@ -4059,7 +4059,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge pyproj ```
-
folium (🥈28 · ⭐ 5.9K) - Python Data. Leaflet.js Maps. MIT +
folium (🥈28 · ⭐ 5.9K) - Leaflet.js地图的Python数据。MIT - [GitHub](https://github.com/python-visualization/folium) (👨‍💻 130 · 🔀 2.1K · 📦 18K · 📋 940 - 22% open · ⏱️ 06.05.2022): @@ -4075,7 +4075,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge folium ```
-
Rasterio (🥉27 · ⭐ 1.8K) - Rasterio reads and writes geospatial raster datasets. ❗Unlicensed +
Rasterio (🥉27 · ⭐ 1.8K) - Rasterio读写地理空间栅格数据集。❗Unlicensed - [GitHub](https://github.com/rasterio/rasterio) (👨‍💻 130 · 🔀 470 · 📥 760 · 📦 5.4K · 📋 1.6K - 8% open · ⏱️ 18.08.2022): @@ -4091,7 +4091,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge rasterio ```
-
geojson (🥉27 · ⭐ 740) - Python bindings and utilities for GeoJSON. BSD-3 +
geojson (🥉27 · ⭐ 740) - GeoJSON的Python接口。BSD-3 - [GitHub](https://github.com/jazzband/geojson) (👨‍💻 48 · 🔀 93 · 📦 10K · 📋 85 - 25% open · ⏱️ 07.05.2022): @@ -4107,7 +4107,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge geojson ```
-
Cartopy (🥉26 · ⭐ 1.8K) - Rasterio reads and writes geospatial raster datasets. ❗Unlicensed +
Cartopy (🥉26 · ⭐ 1.8K) - Rasterio读写地理空间栅格数据集。❗Unlicensed - [GitHub](https://github.com/rasterio/rasterio) (👨‍💻 130 · 🔀 470 · 📥 760 · 📦 5.4K · 📋 1.6K - 8% open · ⏱️ 18.08.2022): @@ -4123,7 +4123,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge cartopy ```
-
GeoViews (🥉25 · ⭐ 430) - Simple, concise geographical visualization in Python. BSD-3 +
GeoViews (🥉25 · ⭐ 430) - 使用Python进行简单,简洁的地理可视化。BSD-3 - [GitHub](https://github.com/holoviz/geoviews) (👨‍💻 28 · 🔀 66 · 📦 470 · 📋 300 - 34% open · ⏱️ 24.08.2022): @@ -4139,7 +4139,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge geoviews ```
-
ArcGIS API (🥉24 · ⭐ 1.4K) - Documentation and samples for ArcGIS API for Python. Apache-2 +
ArcGIS API (🥉24 · ⭐ 1.4K) - ArcGIS API for Python的文档和示例。Apache-2 - [GitHub](https://github.com/Esri/arcgis-python-api) (👨‍💻 81 · 🔀 910 · 📥 5.2K · 📋 470 - 8% open · ⏱️ 17.08.2022): @@ -4155,7 +4155,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra docker pull esridocker/arcgis-api-python-notebook ```
-
PySAL (🥉23 · ⭐ 1.1K) - PySAL: Python Spatial Analysis Library Meta-Package. BSD-3 +
PySAL (🥉23 · ⭐ 1.1K) - PySAL:Python空间分析库元包。BSD-3 - [GitHub](https://github.com/pysal/pysal) (👨‍💻 77 · 🔀 260 · 📋 610 - 1% open · ⏱️ 23.07.2022): @@ -4171,7 +4171,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge pysal ```
-
Sentinelsat (🥉22 · ⭐ 790) - Search and download Copernicus Sentinel satellite images. ❗️GPL-3.0 +
Sentinelsat (🥉22 · ⭐ 790) - 搜索和下载哥白尼前哨卫星图像。❗️GPL-3.0 - [GitHub](https://github.com/sentinelsat/sentinelsat) (👨‍💻 42 · 🔀 200 · 📥 230 · 📦 350 · 📋 330 - 2% open · ⏱️ 01.08.2022): @@ -4183,7 +4183,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra pip install sentinelsat ```
-
Mapbox GL (🥉22 · ⭐ 620 · 💀) - Use Mapbox GL JS to visualize data in a Python Jupyter notebook. MIT +
Mapbox GL (🥉22 · ⭐ 620 · 💀) - 使用Mapbox GL JS可视化Python Jupyter笔记本中的数据。MIT - [GitHub](https://github.com/mapbox/mapboxgl-jupyter) (👨‍💻 21 · 🔀 130 · 📦 140 · 📋 99 - 32% open · ⏱️ 19.04.2021): @@ -4195,7 +4195,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra pip install mapboxgl ```
-
Satpy (🥉21 · ⭐ 850) - Python package for earth-observing satellite data processing. ❗️GPL-3.0 +
Satpy (🥉21 · ⭐ 850) - 用于地球观测卫星数据处理的Python软件包。❗️GPL-3.0 - [GitHub](https://github.com/pytroll/satpy) (👨‍💻 130 · 🔀 240 · 📦 72 · 📋 790 - 38% open · ⏱️ 25.08.2022): @@ -4211,7 +4211,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge satpy ```
-
EarthPy (🥉21 · ⭐ 380 · 💤) - A package built to support working with spatial data using open.. BSD-3 +
EarthPy (🥉21 · ⭐ 380 · 💤) - 使用开放源代码处理空间数据。BSD-3 - [GitHub](https://github.com/earthlab/earthpy) (👨‍💻 40 · 🔀 140 · 📦 160 · 📋 230 - 8% open · ⏱️ 20.12.2021): @@ -4227,7 +4227,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra conda install -c conda-forge earthpy ```
-
geoplotlib (🥉19 · ⭐ 970 · 💀) - python toolbox for visualizing geographical data and making maps. MIT +
geoplotlib (🥉19 · ⭐ 970 · 💀) - python工具箱,用于可视化地理数据和制作地图。MIT - [GitHub](https://github.com/andrea-cuttone/geoplotlib) (👨‍💻 8 · 🔀 160 · 📦 150 · 📋 44 - 56% open · ⏱️ 06.05.2019): @@ -4239,7 +4239,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra pip install geoplotlib ```
-
gmaps (🥉18 · ⭐ 740 · 💀) - Google maps for Jupyter notebooks. BSD-3 +
gmaps (🥉18 · ⭐ 740 · 💀) - Google为Jupyter笔记本电脑映射。BSD-3 - [GitHub](https://github.com/pbugnion/gmaps) (👨‍💻 16 · 🔀 140 · 📦 1 · 📋 200 - 32% open · ⏱️ 22.07.2019): @@ -4259,7 +4259,7 @@ _Libraries to load, process, analyze, and write geographic data as well as libra npm install jupyter-gmaps ```
-
pymap3d (🥉18 · ⭐ 270) - pure-Python (Numpy optional) 3D coordinate conversions for geospace ecef.. BSD-2 +
pymap3d (🥉18 · ⭐ 270) - 纯Python实现(Numpy可选)的3D坐标转换。BSD-2 - [GitHub](https://github.com/geospace-code/pymap3d) (👨‍💻 11 · 🔀 68 · 📋 38 - 2% open · ⏱️ 03.07.2022): @@ -4277,13 +4277,13 @@ _Libraries to load, process, analyze, and write geographic data as well as libra

-## Financial Data +## 金融数据处理 -Back to top +Back to top -_Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, technical analysis, and other tasks on financial data._ +_用于算法股票/加密交易,风险分析,回测,技术分析以及其他金融数据任务的库。_ -
zipline (🥇30 · ⭐ 15K · 💀) - Zipline, a Pythonic Algorithmic Trading Library. Apache-2 +
zipline (🥇30 · ⭐ 15K · 💀) - Zipline,一个Pythonic算法交易库。Apache-2 - [GitHub](https://github.com/quantopian/zipline) (👨‍💻 160 · 🔀 4K · 📦 880 · 📋 970 - 32% open · ⏱️ 14.10.2020): @@ -4295,7 +4295,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install zipline ```
-
yfinance (🥇30 · ⭐ 7.5K) - Yahoo! Finance market data downloader (+faster Pandas Datareader). Apache-2 +
yfinance (🥇30 · ⭐ 7.5K) - Yahoo! 金融市场数据下载器(+更快的Pandas数据加载读取器)。Apache-2 - [GitHub](https://github.com/ranaroussi/yfinance) (👨‍💻 60 · 🔀 1.6K · 📦 13K · 📋 810 - 56% open · ⏱️ 11.07.2022): @@ -4311,7 +4311,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te conda install -c ranaroussi yfinance ```
-
backtrader (🥇27 · ⭐ 9.2K · 💀) - Python Backtesting library for trading strategies. ❗️GPL-3.0 +
backtrader (🥇27 · ⭐ 9.2K · 💀) - 用于交易策略的Python Backtesting库。❗️GPL-3.0 - [GitHub](https://github.com/mementum/backtrader) (👨‍💻 52 · 🔀 2.7K · 📦 1.1K · ⏱️ 17.07.2021): @@ -4323,7 +4323,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install backtrader ```
-
pyfolio (🥈26 · ⭐ 4.5K · 💀) - Portfolio and risk analytics in Python. Apache-2 +
pyfolio (🥈26 · ⭐ 4.5K · 💀) - Python中的投资组合和风险分析。Apache-2 - [GitHub](https://github.com/quantopian/pyfolio) (👨‍💻 56 · 🔀 1.4K · 📦 450 · 📋 400 - 34% open · ⏱️ 15.07.2020): @@ -4339,7 +4339,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te conda install -c conda-forge pyfolio ```
-
ta (🥈26 · ⭐ 3.2K) - Technical Analysis Library using Pandas and Numpy. MIT +
ta (🥈26 · ⭐ 3.2K) - 使用Pandas和Numpy的技术分析库。MIT - [GitHub](https://github.com/bukosabino/ta) (👨‍💻 29 · 🔀 720 · 📦 1.4K · 📋 200 - 51% open · ⏱️ 23.08.2022): @@ -4351,7 +4351,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install ta ```
-
ffn (🥈26 · ⭐ 1.3K) - ffn - a financial function library for Python. MIT +
ffn (🥈26 · ⭐ 1.3K) - ffn-Python的金融函数库。MIT - [GitHub](https://github.com/pmorissette/ffn) (👨‍💻 28 · 🔀 220 · 📦 220 · 📋 100 - 20% open · ⏱️ 01.07.2022): @@ -4363,7 +4363,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install ffn ```
-
Alphalens (🥈25 · ⭐ 2.4K · 💀) - Performance analysis of predictive (alpha) stock factors. Apache-2 +
Alphalens (🥈25 · ⭐ 2.4K · 💀) - 股票因子预测分析。Apache-2 - [GitHub](https://github.com/quantopian/alphalens) (👨‍💻 25 · 🔀 880 · 📦 570 · 📋 180 - 20% open · ⏱️ 27.04.2020): @@ -4379,7 +4379,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te conda install -c conda-forge alphalens ```
-
empyrical (🥈25 · ⭐ 970 · 💀) - Common financial risk and performance metrics. Used by zipline.. Apache-2 +
empyrical (🥈25 · ⭐ 970 · 💀) - 常见的金融风险和绩效指标。Apache-2 - [GitHub](https://github.com/quantopian/empyrical) (👨‍💻 22 · 🔀 300 · 📦 940 · 📋 49 - 46% open · ⏱️ 14.10.2020): @@ -4395,7 +4395,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te conda install -c conda-forge empyrical ```
-
Qlib (🥈24 · ⭐ 9.5K) - Qlib is an AI-oriented quantitative investment platform, which aims to.. MIT +
Qlib (🥈24 · ⭐ 9.5K) - Qlib是一个面向AI的量化投资平台。MIT - [GitHub](https://github.com/microsoft/qlib) (👨‍💻 100 · 🔀 1.7K · 📥 330 · 📦 27 · 📋 600 - 27% open · ⏱️ 24.08.2022): @@ -4407,7 +4407,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install pyqlib ```
-
bt (🥈24 · ⭐ 1.5K) - bt - flexible backtesting for Python. MIT +
bt (🥈24 · ⭐ 1.5K) - bt-Python的灵活回测。MIT - [GitHub](https://github.com/pmorissette/bt) (👨‍💻 27 · 🔀 320 · 📦 130 · 📋 300 - 20% open · ⏱️ 24.08.2022): @@ -4419,7 +4419,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install bt ```
-
FinTA (🥉23 · ⭐ 1.7K) - Common financial technical indicators implemented in Pandas. ❗️LGPL-3.0 +
FinTA (🥉23 · ⭐ 1.7K) - 基于pandas实现的通用金融技术指标。❗️LGPL-3.0 - [GitHub](https://github.com/peerchemist/finta) (👨‍💻 28 · 🔀 550 · 📦 260 · 📋 85 - 24% open · ⏱️ 24.07.2022): @@ -4431,7 +4431,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install finta ```
-
arch (🥉23 · ⭐ 970) - ARCH models in Python. ❗Unlicensed +
arch (🥉23 · ⭐ 970) - Python中的ARCH模型。❗Unlicensed - [GitHub](https://github.com/bashtage/arch) (👨‍💻 31 · 🔀 210 · 📦 620 · 📋 180 - 8% open · ⏱️ 17.08.2022): @@ -4443,7 +4443,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install arch ```
-
TensorTrade (🥉22 · ⭐ 3.9K) - An open source reinforcement learning framework for training,.. Apache-2 +
TensorTrade (🥉22 · ⭐ 3.9K) - 一个开放源代码的强化学习框架。Apache-2 - [GitHub](https://github.com/tensortrade-org/tensortrade) (👨‍💻 61 · 🔀 890 · 📦 36 · 📋 230 - 16% open · ⏱️ 23.08.2022): @@ -4455,7 +4455,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install tensortrade ```
-
PyAlgoTrade (🥉22 · ⭐ 3.7K · 💀) - Python Algorithmic Trading Library. Apache-2 +
PyAlgoTrade (🥉22 · ⭐ 3.7K · 💀) - Python算法交易库。Apache-2 - [GitHub](https://github.com/gbeced/pyalgotrade) (👨‍💻 11 · 🔀 1.2K · 📦 110 · 📋 120 - 31% open · ⏱️ 21.08.2018): @@ -4467,7 +4467,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install pyalgotrade ```
-
Alpha Vantage (🥉21 · ⭐ 3.7K · 💀) - A python wrapper for Alpha Vantage API for financial data. MIT +
Alpha Vantage (🥉21 · ⭐ 3.7K · 💀) - 用于金融数据的Alpha Vantage API的python包装器。MIT - [GitHub](https://github.com/RomelTorres/alpha_vantage) (👨‍💻 39 · 🔀 640 · 📋 260 - 2% open · ⏱️ 14.06.2021): @@ -4479,7 +4479,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install alpha_vantage ```
-
Enigma Catalyst (🥉21 · ⭐ 2.4K · 💤) - An Algorithmic Trading Library for Crypto-Assets in.. Apache-2 +
Enigma Catalyst (🥉21 · ⭐ 2.4K · 💤) - Python中加密资产的算法交易库。Apache-2 - [GitHub](https://github.com/scrtlabs/catalyst) (👨‍💻 150 · 🔀 700 · 📦 25 · 📋 480 - 25% open · ⏱️ 22.09.2021): @@ -4491,7 +4491,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install enigma-catalyst ```
-
tf-quant-finance (🥉20 · ⭐ 3.2K) - High-performance TensorFlow library for quantitative.. Apache-2 +
tf-quant-finance (🥉20 · ⭐ 3.2K) - 用于量化投资的高性能TensorFlow库。Apache-2 - [GitHub](https://github.com/google/tf-quant-finance) (👨‍💻 41 · 🔀 420 · 📋 40 - 37% open · ⏱️ 19.08.2022): @@ -4503,7 +4503,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install tf-quant-finance ```
-
IB-insync (🥉20 · ⭐ 1.9K) - Python sync/async framework for Interactive Brokers API. BSD-2 +
IB-insync (🥉20 · ⭐ 1.9K) - 用于Interactive Brokers API的Python同步/异步框架。BSD-2 - [GitHub](https://github.com/erdewit/ib_insync) (👨‍💻 31 · 🔀 490 · 📋 420 - 1% open · ⏱️ 23.08.2022): @@ -4519,7 +4519,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te conda install -c conda-forge ib-insync ```
-
Crypto Signals (🥉19 · ⭐ 4.1K) - Github.com/CryptoSignal - #1 Quant Trading & Technical.. MIT +
Crypto Signals (🥉19 · ⭐ 4.1K) - CryptoSignal量化交易技术。MIT - [GitHub](https://github.com/CryptoSignal/Crypto-Signal) (👨‍💻 28 · 🔀 1.1K · 📋 260 - 20% open · ⏱️ 09.08.2022): @@ -4531,7 +4531,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te docker pull shadowreaver/crypto-signal ```
-
stockstats (🥉19 · ⭐ 1K · 💤) - Supply a wrapper ``StockDataFrame`` based on the.. ❗Unlicensed +
stockstats (🥉19 · ⭐ 1K · 💤) - 提供StockDataFrame包装器❗Unlicensed - [GitHub](https://github.com/jealous/stockstats) (👨‍💻 8 · 🔀 260 · 📦 530 · 📋 87 - 11% open · ⏱️ 07.01.2022): @@ -4543,7 +4543,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install stockstats ```
-
finmarketpy (🥉18 · ⭐ 3K) - Python library for backtesting trading strategies & analyzing.. Apache-2 +
finmarketpy (🥉18 · ⭐ 3K) - Python库,用于回测交易策略和分析。Apache-2 - [GitHub](https://github.com/cuemacro/finmarketpy) (👨‍💻 14 · 🔀 440 · 📥 40 · 📦 5 · 📋 26 - 88% open · ⏱️ 05.04.2022): @@ -4555,7 +4555,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install finmarketpy ```
-
Backtesting.py (🥉17 · ⭐ 2.8K) - Backtest trading strategies in Python. ❗️AGPL-3.0 +
Backtesting.py (🥉17 · ⭐ 2.8K) - 回溯Python中的交易策略。❗️AGPL-3.0 - [GitHub](https://github.com/kernc/backtesting.py) (👨‍💻 15 · 🔀 550 · 📋 330 - 17% open · ⏱️ 27.03.2022): @@ -4567,7 +4567,7 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te pip install backtesting ```
-
surpriver (🥉12 · ⭐ 1.5K · 💀) - Find big moving stocks before they move using machine.. ❗️GPL-3.0 +
surpriver (🥉12 · ⭐ 1.5K · 💀) - 使用机器学习在股票大波动之前找到它。❗️GPL-3.0 - [GitHub](https://github.com/tradytics/surpriver) (👨‍💻 6 · 🔀 280 · 📋 15 - 60% open · ⏱️ 21.09.2020): @@ -4577,13 +4577,13 @@ _Libraries for algorithmic stock/crypto trading, risk analytics, backtesting, te

-## Time Series Data +## 时间序列 -Back to top +Back to top -_Libraries for forecasting, anomaly detection, feature extraction, and machine learning on time-series and sequential data._ +_用于按时间序列和顺序数据进行预测,异常检测,特征提取和机器学习的库。_ -
pmdarima (🥇30 · ⭐ 1.2K · 📈) - A statistical library designed to fill the void in Python's time.. MIT +
pmdarima (🥇30 · ⭐ 1.2K · 📈) - 一个统计数据库,旨在填补Python时间序列中的空白。MIT - [GitHub](https://github.com/alkaline-ml/pmdarima) (👨‍💻 21 · 🔀 210 · 📦 2.5K · 📋 280 - 9% open · ⏱️ 23.08.2022): @@ -4595,7 +4595,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install pmdarima ```
-
sktime (🥇27 · ⭐ 5.6K) - A unified framework for machine learning with time series. BSD-3 +
sktime (🥇27 · ⭐ 5.6K) - 具有时间序列的机器学习的统一框架。BSD-3 - [GitHub](https://github.com/alan-turing-institute/sktime) (👨‍💻 190 · 🔀 890 · 📥 76 · 📦 560 · 📋 1.3K - 33% open · ⏱️ 25.08.2022): @@ -4607,7 +4607,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install sktime ```
-
STUMPY (🥈26 · ⭐ 2.4K) - STUMPY is a powerful and scalable Python library for computing a Matrix.. BSD-3 +
STUMPY (🥈26 · ⭐ 2.4K) - STUMPY是一个功能强大且可扩展的Python库,用于矩阵计算。BSD-3 - [GitHub](https://github.com/TDAmeritrade/stumpy) (👨‍💻 31 · 🔀 230 · 📦 260 · 📋 340 - 11% open · ⏱️ 04.08.2022): @@ -4623,7 +4623,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l conda install -c conda-forge stumpy ```
-
Prophet (🥈25 · ⭐ 15K) - Tool for producing high quality forecasts for time series data that has.. MIT +
Prophet (🥈25 · ⭐ 15K) - 产生具有时间序列数据的高质量预测的工具。MIT - [GitHub](https://github.com/facebook/prophet) (👨‍💻 150 · 🔀 4.2K · 📥 810 · 📋 1.9K - 13% open · ⏱️ 07.07.2022): @@ -4635,7 +4635,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install fbprophet ```
-
Darts (🥈25 · ⭐ 4.6K) - A python library for easy manipulation and forecasting of time series. Apache-2 +
Darts (🥈25 · ⭐ 4.6K) - 一个易于操作和预测时间序列的python库。Apache-2 - [GitHub](https://github.com/unit8co/darts) (👨‍💻 61 · 🔀 480 · 📦 92 · 📋 600 - 23% open · ⏱️ 25.08.2022): @@ -4651,7 +4651,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l docker pull unit8/darts ```
-
tslearn (🥈25 · ⭐ 2.2K) - A machine learning toolkit dedicated to time-series data. BSD-2 +
tslearn (🥈25 · ⭐ 2.2K) - 专门用于时间序列数据的机器学习工具包。BSD-2 - [GitHub](https://github.com/tslearn-team/tslearn) (👨‍💻 39 · 🔀 280 · 📦 560 · 📋 280 - 32% open · ⏱️ 17.06.2022): @@ -4667,7 +4667,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l conda install -c conda-forge tslearn ```
-
pytorch-forecasting (🥈25 · ⭐ 2.2K) - Time series forecasting with PyTorch. MIT +
pytorch-forecasting (🥈25 · ⭐ 2.2K) - 使用PyTorch进行时间序列预测。MIT - [GitHub](https://github.com/jdb78/pytorch-forecasting) (👨‍💻 32 · 🔀 350 · 📋 510 - 49% open · ⏱️ 22.08.2022): @@ -4679,7 +4679,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install pytorch-forecasting ```
-
tsfresh (🥈23 · ⭐ 6.6K · 💤) - Automatic extraction of relevant features from time series:. MIT +
tsfresh (🥈23 · ⭐ 6.6K · 💤) - 从时间序列中自动提取相关特征。MIT - [GitHub](https://github.com/blue-yonder/tsfresh) (👨‍💻 82 · 🔀 1K · 📋 490 - 10% open · ⏱️ 21.12.2021): @@ -4695,7 +4695,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l conda install -c conda-forge tsfresh ```
-
pyts (🥈23 · ⭐ 1.3K) - A Python package for time series classification. BSD-3 +
pyts (🥈23 · ⭐ 1.3K) - 用于时间序列分类的Python软件包。BSD-3 - [GitHub](https://github.com/johannfaouzi/pyts) (👨‍💻 11 · 🔀 140 · 📦 240 · 📋 64 - 59% open · ⏱️ 16.06.2022): @@ -4711,7 +4711,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l conda install -c conda-forge pyts ```
-
Streamz (🥈23 · ⭐ 1.1K) - Real-time stream processing for python. BSD-3 +
Streamz (🥈23 · ⭐ 1.1K) - python的实时流处理。BSD-3 - [GitHub](https://github.com/python-streamz/streamz) (👨‍💻 45 · 🔀 140 · 📦 310 · 📋 240 - 39% open · ⏱️ 27.07.2022): @@ -4727,7 +4727,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l conda install -c conda-forge streamz ```
-
GluonTS (🥉22 · ⭐ 2.9K) - Probabilistic time series modeling in Python. Apache-2 +
GluonTS (🥉22 · ⭐ 2.9K) - Python中的概率时间序列建模。Apache-2 - [GitHub](https://github.com/awslabs/gluon-ts) (👨‍💻 93 · 🔀 580 · 📋 740 - 31% open · ⏱️ 25.08.2022): @@ -4739,7 +4739,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install gluonts ```
-
PyFlux (🥉22 · ⭐ 2K · 💀) - Open source time series library for Python. BSD-3 +
PyFlux (🥉22 · ⭐ 2K · 💀) - 适用于Python的开源时间序列库。BSD-3 - [GitHub](https://github.com/RJT1990/pyflux) (👨‍💻 6 · 🔀 220 · 📦 220 · 📋 150 - 56% open · ⏱️ 16.12.2018): @@ -4751,7 +4751,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install pyflux ```
-
luminol (🥉20 · ⭐ 1K · 💀) - Anomaly Detection and Correlation library. Apache-2 +
luminol (🥉20 · ⭐ 1K · 💀) - 异常检测和相关库。Apache-2 - [GitHub](https://github.com/linkedin/luminol) (👨‍💻 8 · 🔀 200 · 📦 66 · 📋 36 - 66% open · ⏱️ 09.01.2018): @@ -4763,7 +4763,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install luminol ```
-
ADTK (🥉18 · ⭐ 850 · 💀) - A Python toolkit for rule-based/unsupervised anomaly detection in time.. MPL-2.0 +
ADTK (🥉18 · ⭐ 850 · 💀) - 一个Python工具包,用于基于规则的/无监督的异常检测。MPL-2.0 - [GitHub](https://github.com/arundo/adtk) (👨‍💻 11 · 🔀 100 · 📋 67 - 46% open · ⏱️ 17.04.2020): @@ -4775,7 +4775,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install adtk ```
-
pydlm (🥉18 · ⭐ 420 · 💀) - A python library for Bayesian time series modeling. BSD-3 +
pydlm (🥉18 · ⭐ 420 · 💀) - 用于贝叶斯时间序列建模的python库。BSD-3 - [GitHub](https://github.com/wwrechard/pydlm) (👨‍💻 6 · 🔀 91 · 📦 27 · 📋 43 - 81% open · ⏱️ 22.10.2019): @@ -4787,7 +4787,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install pydlm ```
-
tick (🥉18 · ⭐ 400 · 💀) - Module for statistical learning, with a particular emphasis on time-.. BSD-3 +
tick (🥉18 · ⭐ 400 · 💀) - 统计学习模块。BSD-3 - [GitHub](https://github.com/X-DataInitiative/tick) (👨‍💻 16 · 🔀 84 · 📥 200 · 📦 66 · 📋 220 - 25% open · ⏱️ 15.06.2020): @@ -4799,7 +4799,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install tick ```
-
matrixprofile-ts (🥉17 · ⭐ 690 · 💀) - A Python library for detecting patterns and anomalies.. Apache-2 +
matrixprofile-ts (🥉17 · ⭐ 690 · 💀) - 一个用于检测模式和异常的Python库。Apache-2 - [GitHub](https://github.com/target/matrixprofile-ts) (👨‍💻 15 · 🔀 97 · 📦 19 · 📋 53 - 35% open · ⏱️ 25.04.2020): @@ -4811,7 +4811,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install matrixprofile-ts ```
-
seglearn (🥉17 · ⭐ 520) - Python module for machine learning time series:. BSD-3 +
seglearn (🥉17 · ⭐ 520) - 机器学习时间序列的Python模块。BSD-3 - [GitHub](https://github.com/dmbee/seglearn) (👨‍💻 14 · 🔀 61 · 📦 11 · 📋 29 - 20% open · ⏱️ 16.06.2022): @@ -4823,7 +4823,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install seglearn ```
-
Auto TS (🥉17 · ⭐ 470) - Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost.. Apache-2 +
Auto TS (🥉17 · ⭐ 470) - 自动实现ARIMA,SARIMAX,VAR,FB Prophet和XGBoost等模型时序建模。Apache-2 - [GitHub](https://github.com/AutoViML/Auto_TS) (👨‍💻 6 · 🔀 86 · 📋 75 - 8% open · ⏱️ 16.08.2022): @@ -4835,7 +4835,7 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l pip install auto-ts ```
-
atspy (🥉13 · ⭐ 450 · 💤) - AtsPy: Automated Time Series Models in Python (by @firmai). ❗Unlicensed +
atspy (🥉13 · ⭐ 450 · 💤) - AtsPy:Python中的自动时间序列模型。❗Unlicensed - [GitHub](https://github.com/firmai/atspy) (👨‍💻 5 · 🔀 85 · 📦 6 · 📋 21 - 90% open · ⏱️ 18.12.2021): @@ -4849,13 +4849,13 @@ _Libraries for forecasting, anomaly detection, feature extraction, and machine l

-## Medical Data +## 医疗领域 -Back to top +Back to top -_Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic data, and other medical imaging formats._ +_用于处理和分析MRI,EEG,基因组数据和其他医学成像格式等医学数据的库。_ -
NIPYPE (🥇31 · ⭐ 640) - Workflows and interfaces for neuroimaging packages. Apache-2 +
NIPYPE (🥇31 · ⭐ 640) - 神经影像软件包的工作流程和接口。Apache-2 - [GitHub](https://github.com/nipy/nipype) (👨‍💻 240 · 🔀 460 · 📦 1K · 📋 1.3K - 28% open · ⏱️ 22.08.2022): @@ -4871,7 +4871,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic conda install -c conda-forge nipype ```
-
Lifelines (🥇30 · ⭐ 1.9K) - Survival analysis in Python. MIT +
Lifelines (🥇30 · ⭐ 1.9K) - Python中的生存分析。MIT - [GitHub](https://github.com/CamDavidsonPilon/lifelines) (👨‍💻 100 · 🔀 480 · 📦 1K · 📋 870 - 25% open · ⏱️ 17.07.2022): @@ -4887,7 +4887,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic conda install -c conda-forge lifelines ```
-
NiBabel (🥈28 · ⭐ 490) - Python package to access a cacophony of neuro-imaging file formats. ❗Unlicensed +
NiBabel (🥈28 · ⭐ 490) - Python软件包,用于访问神经影像文件格式。❗Unlicensed - [GitHub](https://github.com/nipy/nibabel) (👨‍💻 94 · 🔀 230 · 📦 7.9K · 📋 440 - 26% open · ⏱️ 20.08.2022): @@ -4903,7 +4903,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic conda install -c conda-forge nibabel ```
-
MNE (🥈27 · ⭐ 2K) - MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python. BSD-3 +
MNE (🥈27 · ⭐ 2K) - MNE:Python中的磁脑图(MEG)和脑电图(EEG)。BSD-3 - [GitHub](https://github.com/mne-tools/mne-python) (👨‍💻 310 · 🔀 1K · 📦 1.8K · 📋 4.2K - 9% open · ⏱️ 25.08.2022): @@ -4919,7 +4919,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic conda install -c conda-forge mne ```
-
Hail (🥈27 · ⭐ 820) - Scalable genomic data analysis. MIT +
Hail (🥈27 · ⭐ 820) - 可扩展的基因组数据分析。MIT - [GitHub](https://github.com/hail-is/hail) (👨‍💻 81 · 🔀 210 · 📦 75 · 📋 2K - 0% open · ⏱️ 26.08.2022): @@ -4931,7 +4931,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic pip install hail ```
-
MONAI (🥈25 · ⭐ 3.3K) - AI Toolkit for Healthcare Imaging. Apache-2 +
MONAI (🥈25 · ⭐ 3.3K) - 用于医疗成像的AI工具包。Apache-2 - [GitHub](https://github.com/Project-MONAI/MONAI) (👨‍💻 110 · 🔀 640 · 📦 460 · 📋 1.9K - 11% open · ⏱️ 25.08.2022): @@ -4943,7 +4943,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic pip install monai ```
-
Nilearn (🥈24 · ⭐ 880) - Machine learning for NeuroImaging in Python. ❗Unlicensed +
Nilearn (🥈24 · ⭐ 880) - Python中NeuroImaging的机器学习。❗Unlicensed - [GitHub](https://github.com/nilearn/nilearn) (👨‍💻 190 · 🔀 450 · 📥 64 · 📦 1.7K · 📋 1.6K - 14% open · ⏱️ 25.08.2022): @@ -4959,7 +4959,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic conda install -c conda-forge nilearn ```
-
DIPY (🥈24 · ⭐ 540) - DIPY is the paragon 3D/4D+ imaging library in Python. Contains.. ❗Unlicensed +
DIPY (🥈24 · ⭐ 540) - DIPY是Python中的Paragon 3D/4D +影像库。❗Unlicensed - [GitHub](https://github.com/dipy/dipy) (👨‍💻 130 · 🔀 340 · 📦 600 · 📋 780 - 14% open · ⏱️ 25.08.2022): @@ -4975,7 +4975,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic conda install -c conda-forge dipy ```
-
DeepVariant (🥉22 · ⭐ 2.6K) - DeepVariant is an analysis pipeline that uses a deep neural.. BSD-3 +
DeepVariant (🥉22 · ⭐ 2.6K) - DeepVariant是使用深度神经网络的分析管道。BSD-3 - [GitHub](https://github.com/google/deepvariant) (👨‍💻 24 · 🔀 620 · 📥 4.1K · 📋 500 - 1% open · ⏱️ 02.06.2022): @@ -4987,7 +4987,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic conda install -c bioconda deepvariant ```
-
NiftyNet (🥉22 · ⭐ 1.3K · 💀) - [unmaintained] An open-source convolutional neural.. Apache-2 +
NiftyNet (🥉22 · ⭐ 1.3K · 💀) - 开源医疗卷积神经网络工具库。Apache-2 - [GitHub](https://github.com/NifTK/NiftyNet) (👨‍💻 59 · 🔀 390 · 📦 38 · 📋 320 - 30% open · ⏱️ 21.04.2020): @@ -4999,7 +4999,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic pip install niftynet ```
-
MedPy (🥉22 · ⭐ 430 · 💀) - Medical image processing in Python. ❗️GPL-3.0 +
MedPy (🥉22 · ⭐ 430 · 💀) - Python中的医学图像处理。❗️GPL-3.0 - [GitHub](https://github.com/loli/medpy) (👨‍💻 14 · 🔀 120 · 📦 700 · 📋 80 - 15% open · ⏱️ 01.05.2020): @@ -5011,7 +5011,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic pip install MedPy ```
-
Glow (🥉22 · ⭐ 210) - An open-source toolkit for large-scale genomic analysis. Apache-2 +
Glow (🥉22 · ⭐ 210) - 一个用于大规模基因组分析的开源工具包。Apache-2 - [GitHub](https://github.com/projectglow/glow) (👨‍💻 21 · 🔀 78 · 📋 130 - 40% open · ⏱️ 09.05.2022): @@ -5023,7 +5023,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic pip install glow.py ```
-
DLTK (🥉18 · ⭐ 1.3K · 💀) - Deep Learning Toolkit for Medical Image Analysis. Apache-2 +
DLTK (🥉18 · ⭐ 1.3K · 💀) - 用于医学图像分析的深度学习工具包。Apache-2 - [GitHub](https://github.com/DLTK/DLTK) (👨‍💻 9 · 🔀 390 · 📦 23 · 📋 31 - 22% open · ⏱️ 21.01.2019): @@ -5035,7 +5035,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic pip install dltk ```
-
NIPY (🥉18 · ⭐ 320 · 💀) - Neuroimaging in Python FMRI analysis package. BSD-3 +
NIPY (🥉18 · ⭐ 320 · 💀) - Python FMRI分析软件包中的Neuroimaging。BSD-3 - [GitHub](https://github.com/nipy/nipy) (👨‍💻 63 · 🔀 130 · 📋 150 - 26% open · ⏱️ 29.03.2021): @@ -5051,7 +5051,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic conda install -c conda-forge nipy ```
-
Brainiak (🥉18 · ⭐ 280 · 💀) - Brain Imaging Analysis Kit. Apache-2 +
Brainiak (🥉18 · ⭐ 280 · 💀) - 脑成像分析套件。Apache-2 - [GitHub](https://github.com/brainiak/brainiak) (👨‍💻 34 · 🔀 130 · 📦 16 · 📋 200 - 37% open · ⏱️ 28.05.2021): @@ -5067,7 +5067,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic docker pull brainiak/brainiak ```
-
MedicalTorch (🥉15 · ⭐ 790 · 💀) - A medical imaging framework for Pytorch. Apache-2 +
MedicalTorch (🥉15 · ⭐ 790 · 💀) - Pytorch的医学成像框架。Apache-2 - [GitHub](https://github.com/perone/medicaltorch) (👨‍💻 8 · 🔀 110 · 📦 12 · 📋 22 - 59% open · ⏱️ 16.04.2021): @@ -5079,7 +5079,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic pip install medicaltorch ```
-
MedicalNet (🥉14 · ⭐ 1.4K · 💀) - Many studies have shown that the performance on deep learning is.. MIT +
MedicalNet (🥉14 · ⭐ 1.4K · 💀) - Transfer Learning for 3D Medical Image Analysis的论文实现。MIT - [GitHub](https://github.com/Tencent/MedicalNet) (🔀 370 · 📋 70 - 78% open · ⏱️ 27.08.2020): @@ -5087,7 +5087,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic git clone https://github.com/Tencent/MedicalNet ```
-
Medical Detection Toolkit (🥉14 · ⭐ 1.1K) - The Medical Detection Toolkit contains 2D + 3D.. Apache-2 +
Medical Detection Toolkit (🥉14 · ⭐ 1.1K) - Medical Detection Toolkit包含2D + 3D。Apache-2 - [GitHub](https://github.com/MIC-DKFZ/medicaldetectiontoolkit) (👨‍💻 3 · 🔀 280 · 📋 120 - 30% open · ⏱️ 04.04.2022): @@ -5095,7 +5095,7 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic git clone https://github.com/MIC-DKFZ/medicaldetectiontoolkit ```
-
DeepNeuro (🥉11 · ⭐ 110 · 💀) - A deep learning python package for neuroimaging data. Made by:. MIT +
DeepNeuro (🥉11 · ⭐ 110 · 💀) - 用于神经影像数据的深度学习python软件包。MIT - [GitHub](https://github.com/QTIM-Lab/DeepNeuro) (👨‍💻 6 · 🔀 34 · 📦 1 · 📋 41 - 60% open · ⏱️ 24.06.2020): @@ -5109,13 +5109,13 @@ _Libraries for processing and analyzing medical data such as MRIs, EEGs, genomic

-## Optical Character Recognition +## 光学字符识别OCR -Back to top +Back to top -_Libraries for optical character recognition (OCR) and text extraction from images or videos._ +_用于光学字符识别(OCR)和从图像或视频中提取文本的库。_ -
EasyOCR (🥇31 · ⭐ 16K) - Ready-to-use OCR with 80+ supported languages and all popular writing.. Apache-2 +
EasyOCR (🥇31 · ⭐ 16K) - 即用型OCR,具有80多种受支持的语言和所有流行的手写文字。Apache-2 - [GitHub](https://github.com/JaidedAI/EasyOCR) (👨‍💻 110 · 🔀 2.2K · 📥 2M · 📦 1.5K · 📋 640 - 15% open · ⏱️ 25.08.2022): @@ -5127,7 +5127,7 @@ _Libraries for optical character recognition (OCR) and text extraction from imag pip install easyocr ```
-
PaddleOCR (🥇27 · ⭐ 24K) - Awesome multilingual OCR toolkits based on PaddlePaddle.. Apache-2 +
PaddleOCR (🥇27 · ⭐ 24K) - 基于PaddlePaddle的多语言OCR工具包。Apache-2 - [GitHub](https://github.com/PaddlePaddle/PaddleOCR) (👨‍💻 110 · 🔀 4.9K · 📦 780 · 📋 5.1K - 25% open · ⏱️ 26.08.2022): @@ -5139,7 +5139,7 @@ _Libraries for optical character recognition (OCR) and text extraction from imag pip install paddleocr ```
-
tesserocr (🥈26 · ⭐ 1.7K) - A Python wrapper for the tesseract-ocr API. MIT +
tesserocr (🥈26 · ⭐ 1.7K) - 用于tesseract-ocr API的Python包装器。MIT - [GitHub](https://github.com/sirfz/tesserocr) (👨‍💻 26 · 🔀 220 · 📦 700 · 📋 250 - 31% open · ⏱️ 23.08.2022): @@ -5155,7 +5155,7 @@ _Libraries for optical character recognition (OCR) and text extraction from imag conda install -c conda-forge tesserocr ```
-
Tesseract (🥈25 · ⭐ 4.4K) - Python-tesseract is an optical character recognition (OCR) tool.. Apache-2 +
Tesseract (🥈25 · ⭐ 4.4K) - Python-tesseract是一种光学字符识别(OCR)工具。Apache-2 - [GitHub](https://github.com/madmaze/pytesseract) (👨‍💻 41 · 🔀 600 · 📋 310 - 4% open · ⏱️ 16.08.2022): @@ -5171,7 +5171,7 @@ _Libraries for optical character recognition (OCR) and text extraction from imag conda install -c conda-forge pytesseract ```
-
OCRmyPDF (🥈22 · ⭐ 7K) - OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them.. MPL-2.0 +
OCRmyPDF (🥈22 · ⭐ 7K) - OCRmyPDF将OCR文本层添加到扫描的PDF文件中使用。MPL-2.0 - [GitHub](https://github.com/ocrmypdf/OCRmyPDF) (👨‍💻 74 · 🔀 590 · 📋 880 - 9% open · ⏱️ 15.08.2022): @@ -5183,7 +5183,7 @@ _Libraries for optical character recognition (OCR) and text extraction from imag pip install ocrmypdf ```
-
pdftabextract (🥉19 · ⭐ 2K) - A set of tools for extracting tables from PDF files.. Apache-2 +
pdftabextract (🥉19 · ⭐ 2K) - 一组用于从PDF文件提取表格的工具。Apache-2 - [GitHub](https://github.com/WZBSocialScienceCenter/pdftabextract) (👨‍💻 3 · 🔀 350 · 📦 42 · 📋 21 - 14% open · ⏱️ 24.06.2022): @@ -5195,7 +5195,7 @@ _Libraries for optical character recognition (OCR) and text extraction from imag pip install pdftabextract ```
-
calamari (🥉19 · ⭐ 940) - Line based ATR Engine based on OCRopy. Apache-2 +
calamari (🥉19 · ⭐ 940) - 基于OCRopy的基于行的ATR引擎。Apache-2 - [GitHub](https://github.com/Calamari-OCR/calamari) (👨‍💻 19 · 🔀 190 · 📋 250 - 19% open · ⏱️ 10.06.2022): @@ -5207,7 +5207,7 @@ _Libraries for optical character recognition (OCR) and text extraction from imag pip install calamari_ocr ```
-
attention-ocr (🥉19 · ⭐ 920 · 💤) - A Tensorflow model for text recognition (CNN + seq2seq.. MIT +
attention-ocr (🥉19 · ⭐ 920 · 💤) - 用于文本识别的Tensorflow模型。MIT - [GitHub](https://github.com/emedvedev/attention-ocr) (👨‍💻 27 · 🔀 240 · 📦 20 · 📋 150 - 15% open · ⏱️ 29.10.2021): @@ -5219,7 +5219,7 @@ _Libraries for optical character recognition (OCR) and text extraction from imag pip install aocr ```
-
doc2text (🥉18 · ⭐ 1.3K · 💀) - Detect text blocks and OCR poorly scanned PDFs in bulk. Python.. MIT +
doc2text (🥉18 · ⭐ 1.3K · 💀) - 批量检测文本块和OCR扫描不良的PDF。MIT - [GitHub](https://github.com/jlsutherland/doc2text) (👨‍💻 5 · 🔀 95 · 📦 60 · 📋 21 - 57% open · ⏱️ 01.12.2020): @@ -5231,7 +5231,7 @@ _Libraries for optical character recognition (OCR) and text extraction from imag pip install doc2text ```
-
keras-ocr (🥉18 · ⭐ 1.1K) - A packaged and flexible version of the CRAFT text detector and.. MIT +
keras-ocr (🥉18 · ⭐ 1.1K) - CRAFT文本检测器。MIT - [GitHub](https://github.com/faustomorales/keras-ocr) (👨‍💻 15 · 🔀 270 · 📥 300K · 📋 180 - 38% open · ⏱️ 19.05.2022): @@ -5243,7 +5243,7 @@ _Libraries for optical character recognition (OCR) and text extraction from imag pip install keras-ocr ```
-
Mozart (🥉11 · ⭐ 400) - An optical music recognition (OMR) system. Converts sheet.. Apache-2 +
Mozart (🥉11 · ⭐ 400) - 光学音乐识别(OMR)系统。Apache-2 - [GitHub](https://github.com/aashrafh/Mozart) (👨‍💻 5 · 🔀 58 · 📋 12 - 25% open · ⏱️ 24.08.2022): @@ -5253,13 +5253,13 @@ _Libraries for optical character recognition (OCR) and text extraction from imag

-## Data Containers & Structures +## 数据容器和结构 -Back to top +Back to top -_General-purpose data containers & structures as well as utilities & extensions for pandas._ +_通用数据容器和结构以及pandas的实用程序和扩展。_ -
pandas (🥇39 · ⭐ 35K) - Flexible and powerful data analysis / manipulation library for.. BSD-3 +
pandas (🥇39 · ⭐ 35K) - 灵活而强大的数据分析/操作库。BSD-3 - [GitHub](https://github.com/pandas-dev/pandas) (👨‍💻 3.1K · 🔀 15K · 📥 160K · 📦 800K · 📋 23K - 14% open · ⏱️ 25.08.2022): @@ -5275,7 +5275,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge pandas ```
-
numpy (🥇38 · ⭐ 21K) - The fundamental package for scientific computing with Python. BSD-3 +
numpy (🥇38 · ⭐ 21K) - 使用Python进行科学计算的基本软件包。BSD-3 - [GitHub](https://github.com/numpy/numpy) (👨‍💻 1.5K · 🔀 7K · 📥 560K · 📦 1.2M · 📋 11K - 18% open · ⏱️ 24.08.2022): @@ -5291,7 +5291,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge numpy ```
-
h5py (🥇36 · ⭐ 1.8K) - HDF5 for Python -- The h5py package is a Pythonic interface to the HDF5.. BSD-3 +
h5py (🥇36 · ⭐ 1.8K) - 适用于Python的HDF5-h5py软件包,HDF5的Pythonic接口。BSD-3 - [GitHub](https://github.com/h5py/h5py) (👨‍💻 180 · 🔀 450 · 📥 2.1K · 📦 170K · 📋 1.3K - 16% open · ⏱️ 01.07.2022): @@ -5307,7 +5307,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge h5py ```
-
Arrow (🥈33 · ⭐ 10K) - Apache Arrow is a cross-language development platform for in-.. Apache-2 +
Arrow (🥈33 · ⭐ 10K) - Apache Arrow定义了一种在内存中表示tabular data的格式。Apache-2 - [GitHub](https://github.com/apache/arrow) (👨‍💻 930 · 🔀 2.4K · 📦 77 · 📋 840 - 6% open · ⏱️ 25.08.2022): @@ -5323,7 +5323,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge arrow ```
-
Modin (🥈29 · ⭐ 7.7K) - Modin: Speed up your Pandas workflows by changing a single line of.. Apache-2 +
Modin (🥈29 · ⭐ 7.7K) - Modin:通过更改一行来加快Pandas工作流程。Apache-2 - [GitHub](https://github.com/modin-project/modin) (👨‍💻 100 · 🔀 540 · 📥 200K · 📦 710 · 📋 2.9K - 30% open · ⏱️ 25.08.2022): @@ -5335,7 +5335,7 @@ _General-purpose data containers & structures as well as utilities & extensions pip install modin ```
-
xarray (🥈29 · ⭐ 2.7K) - N-D labeled arrays and datasets in Python. Apache-2 +
xarray (🥈29 · ⭐ 2.7K) - Python中带有N-D标签的数组和数据集。Apache-2 - [GitHub](https://github.com/pydata/xarray) (👨‍💻 390 · 🔀 800 · 📦 12K · 📋 3.4K - 26% open · ⏱️ 25.08.2022): @@ -5351,7 +5351,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge xarray ```
-
sklearn-pandas (🥈29 · ⭐ 2.6K) - Pandas integration with sklearn. ❗️Zlib +
sklearn-pandas (🥈29 · ⭐ 2.6K) - pandas与sklearn集成。❗️Zlib - [GitHub](https://github.com/scikit-learn-contrib/sklearn-pandas) (👨‍💻 39 · 🔀 380 · 📦 4.4K · 📋 150 - 16% open · ⏱️ 17.07.2022): @@ -5363,7 +5363,7 @@ _General-purpose data containers & structures as well as utilities & extensions pip install sklearn-pandas ```
-
datasketch (🥈29 · ⭐ 1.8K) - MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog,.. MIT +
datasketch (🥈29 · ⭐ 1.8K) - MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog等实现。MIT - [GitHub](https://github.com/ekzhu/datasketch) (👨‍💻 24 · 🔀 240 · 📥 19 · 📦 440 · 📋 140 - 25% open · ⏱️ 19.08.2022): @@ -5375,7 +5375,7 @@ _General-purpose data containers & structures as well as utilities & extensions pip install datasketch ```
-
Bottleneck (🥈29 · ⭐ 780) - Fast NumPy array functions written in C. BSD-2 +
Bottleneck (🥈29 · ⭐ 780) - 用C编写的快速NumPy数组函数。BSD-2 - [GitHub](https://github.com/pydata/bottleneck) (👨‍💻 25 · 🔀 80 · 📦 35K · 📋 220 - 15% open · ⏱️ 02.07.2022): @@ -5391,7 +5391,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge bottleneck ```
-
Koalas (🥈28 · ⭐ 3.2K · 💤) - Koalas: pandas API on Apache Spark. Apache-2 +
Koalas (🥈28 · ⭐ 3.2K · 💤) - Apache Spark上的pandas API。Apache-2 - [GitHub](https://github.com/databricks/koalas) (👨‍💻 51 · 🔀 330 · 📥 1K · 📦 220 · 📋 580 - 16% open · ⏱️ 21.10.2021): @@ -5407,7 +5407,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge koalas ```
-
Blaze (🥈28 · ⭐ 3.1K · 💀) - NumPy and Pandas interface to Big Data. BSD-3 +
Blaze (🥈28 · ⭐ 3.1K · 💀) - NumPy和Pandas连接到大数据。BSD-3 - [GitHub](https://github.com/blaze/blaze) (👨‍💻 65 · 🔀 360 · 📦 8.3K · 📋 750 - 33% open · ⏱️ 15.08.2019): @@ -5423,7 +5423,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge blaze ```
-
Vaex (🥉26 · ⭐ 7.3K) - Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python, ML, visualize and.. MIT +
Vaex (🥉26 · ⭐ 7.3K) - 用于Python,ML的核外混合Apache Arrow / NumPy DataFrame可视化等实现。MIT - [GitHub](https://github.com/vaexio/vaex) (👨‍💻 70 · 🔀 550 · 📥 240 · 📦 310 · 📋 1.1K - 31% open · ⏱️ 25.08.2022): @@ -5439,7 +5439,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge vaex ```
-
zarr (🥉26 · ⭐ 970) - An implementation of chunked, compressed, N-dimensional arrays for Python. MIT +
zarr (🥉26 · ⭐ 970) - Python的分块,压缩N维数组的实现。MIT - [GitHub](https://github.com/zarr-developers/zarr-python) (👨‍💻 65 · 🔀 160 · 📦 1.4K · 📋 500 - 38% open · ⏱️ 15.08.2022): @@ -5455,7 +5455,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge zarr ```
-
numexpr (🥉25 · ⭐ 1.8K) - Fast numerical array expression evaluator for Python, NumPy, PyTables,.. MIT +
numexpr (🥉25 · ⭐ 1.8K) - 适用于Python,NumPy,PyTables等的快速数值数组表达式评估器。MIT - [GitHub](https://github.com/pydata/numexpr) (👨‍💻 63 · 🔀 180 · 📥 62 · 📋 330 - 18% open · ⏱️ 19.07.2022): @@ -5471,7 +5471,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge numexpr ```
-
PyTables (🥉25 · ⭐ 1.1K) - A Python package to manage extremely large amounts of data. BSD-3 +
PyTables (🥉25 · ⭐ 1.1K) - 一个Python包,用于管理大量数据。BSD-3 - [GitHub](https://github.com/PyTables/PyTables) (👨‍💻 110 · 🔀 210 · 📥 170 · 📋 650 - 22% open · ⏱️ 24.08.2022): @@ -5487,7 +5487,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge pytables ```
-
Arctic (🥉24 · ⭐ 2.8K) - Arctic is a high performance datastore for numeric data. ❗️LGPL-2.1 +
Arctic (🥉24 · ⭐ 2.8K) - Arctic是用于数字数据的高性能数据存储。❗️LGPL-2.1 - [GitHub](https://github.com/man-group/arctic) (👨‍💻 76 · 🔀 530 · 📥 190 · 📦 180 · 📋 530 - 14% open · ⏱️ 02.03.2022): @@ -5515,7 +5515,7 @@ _General-purpose data containers & structures as well as utilities & extensions pip install pandarallel ```
-
swifter (🥉24 · ⭐ 2.1K) - A package which efficiently applies any function to a pandas.. MIT +
swifter (🥉24 · ⭐ 2.1K) - 一个可以对pandas Dataframe或者series做高效function映射的工具库。MIT - [GitHub](https://github.com/jmcarpenter2/swifter) (👨‍💻 17 · 🔀 97 · 📦 660 · 📋 120 - 7% open · ⏱️ 16.08.2022): @@ -5531,7 +5531,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge swifter ```
-
pandasql (🥉24 · ⭐ 1.1K · 💀) - sqldf for pandas. MIT +
pandasql (🥉24 · ⭐ 1.1K · 💀) - pandas的sqldf。MIT - [GitHub](https://github.com/yhat/pandasql) (👨‍💻 15 · 🔀 150 · 📦 1.5K · 📋 70 - 65% open · ⏱️ 01.02.2017): @@ -5543,7 +5543,7 @@ _General-purpose data containers & structures as well as utilities & extensions pip install pandasql ```
-
bcolz (🥉24 · ⭐ 940 · 💀) - A columnar data container that can be compressed. ❗Unlicensed +
bcolz (🥉24 · ⭐ 940 · 💀) - 可以压缩的列式数据容器。❗Unlicensed - [GitHub](https://github.com/Blosc/bcolz) (👨‍💻 33 · 🔀 130 · 📦 1.8K · 📋 240 - 50% open · ⏱️ 10.09.2020): @@ -5559,7 +5559,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge bcolz ```
-
TinyDB (🥉23 · ⭐ 5.3K) - TinyDB is a lightweight document oriented database optimized for your.. MIT +
TinyDB (🥉23 · ⭐ 5.3K) - TinyDB:轻型面向文档的数据库。MIT - [GitHub](https://github.com/msiemens/tinydb) (👨‍💻 78 · 🔀 450 · 📋 280 - 3% open · ⏱️ 23.07.2022): @@ -5575,7 +5575,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge tinydb ```
-
StaticFrame (🥉22 · ⭐ 310) - Immutable and grow-only Pandas-like DataFrames with a more explicit.. MIT +
StaticFrame (🥉22 · ⭐ 310) - 类似Pandas的DataFrame的不可变且仅增长的高效数据结构实现。MIT - [GitHub](https://github.com/InvestmentSystems/static-frame) (👨‍💻 20 · 🔀 26 · 📦 11 · 📋 450 - 9% open · ⏱️ 23.08.2022): @@ -5591,7 +5591,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge static-frame ```
-
datatable (🥉20 · ⭐ 1.6K) - A Python package for manipulating 2-dimensional tabular data.. MPL-2.0 +
datatable (🥉20 · ⭐ 1.6K) - 一个用于处理二维表格数据的Python包。MPL-2.0 - [GitHub](https://github.com/h2oai/datatable) (👨‍💻 33 · 🔀 140 · 📥 1.7K · 📋 1.4K - 10% open · ⏱️ 12.08.2022): @@ -5603,7 +5603,7 @@ _General-purpose data containers & structures as well as utilities & extensions pip install datatable ```
-
pickleDB (🥉20 · ⭐ 700 · 💀) - pickleDB is an open source key-value store using Python's json.. BSD-3 +
pickleDB (🥉20 · ⭐ 700 · 💀) - pickleDB是使用Python的json的开源键值存储。BSD-3 - [GitHub](https://github.com/patx/pickledb) (👨‍💻 12 · 🔀 110 · 📦 940 · 📋 57 - 28% open · ⏱️ 15.11.2019): @@ -5615,7 +5615,7 @@ _General-purpose data containers & structures as well as utilities & extensions pip install pickledb ```
-
fletcher (🥉19 · ⭐ 220 · 💀) - Pandas ExtensionDType/Array backed by Apache Arrow. MIT +
fletcher (🥉19 · ⭐ 220 · 💀) - 由Apache Arrow支持的Pandas ExtensionDType/Array。MIT - [GitHub](https://github.com/xhochy/fletcher) (👨‍💻 24 · 🔀 33 · 📥 13 · 📦 4 · 📋 74 - 45% open · ⏱️ 18.02.2021): @@ -5631,7 +5631,7 @@ _General-purpose data containers & structures as well as utilities & extensions conda install -c conda-forge fletcher ```
-
Bounter (🥉18 · ⭐ 940 · 💀) - Efficient Counter that uses a limited (bounded) amount of memory.. MIT +
Bounter (🥉18 · ⭐ 940 · 💀) - 使用有限内存的高效计数器。MIT - [GitHub](https://github.com/RaRe-Technologies/bounter) (👨‍💻 8 · 🔀 44 · 📦 26 · 📋 25 - 64% open · ⏱️ 24.05.2021): @@ -5643,7 +5643,7 @@ _General-purpose data containers & structures as well as utilities & extensions pip install bounter ```
-
Pandas Summary (🥉16 · ⭐ 430) - An extension to pandas dataframes describe function. Apache-2 +
Pandas Summary (🥉16 · ⭐ 430) - pandas Dataframe的describe函数功能扩展。Apache-2 - [GitHub](https://github.com/polyaxon/datatile) (👨‍💻 8 · 🔀 39 · 📋 13 - 46% open · ⏱️ 14.08.2022): @@ -5655,7 +5655,7 @@ _General-purpose data containers & structures as well as utilities & extensions pip install pandas-summary ```
-
PandaPy (🥉10 · ⭐ 510 · 💤) - PandaPy has the speed of NumPy and the usability of.. ❗Unlicensed +
PandaPy (🥉10 · ⭐ 510 · 💤) - PandaPy:具有NumPy的速度,性能高于pandas的表格数据实现。❗Unlicensed - [GitHub](https://github.com/firmai/pandapy) (👨‍💻 3 · 🔀 58 · 📦 2 · 📋 2 - 50% open · ⏱️ 20.10.2021): @@ -5669,13 +5669,13 @@ _General-purpose data containers & structures as well as utilities & extensions

-## Data Loading & Extraction +## 数据读写与提取 -Back to top +Back to top -_Libraries for loading, collecting, and extracting data from a variety of data sources and formats._ +_用于从各种数据源和格式加载,收集和提取数据的库。_ -
Faker (🥇37 · ⭐ 15K) - Faker is a Python package that generates fake data for you. MIT +
Faker (🥇37 · ⭐ 15K) - Faker是一个Python软件包,可为您生成伪造数据。MIT - [GitHub](https://github.com/joke2k/faker) (👨‍💻 470 · 🔀 1.6K · 📦 67K · 📋 580 - 2% open · ⏱️ 17.08.2022): @@ -5691,7 +5691,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge faker ```
-
Datasets (🥇32 · ⭐ 14K) - The largest hub of ready-to-use NLP datasets for ML models with.. Apache-2 +
Datasets (🥇32 · ⭐ 14K) - 具有ML模型的最大的即用型NLP数据集合。Apache-2 - [GitHub](https://github.com/huggingface/datasets) (👨‍💻 440 · 🔀 1.8K · 📦 6K · 📋 1.7K - 26% open · ⏱️ 25.08.2022): @@ -5703,7 +5703,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s pip install datasets ```
-
Tablib (🥇32 · ⭐ 4.2K) - Python Module for Tabular Datasets in XLS, CSV, JSON, YAML, &c. MIT +
Tablib (🥇32 · ⭐ 4.2K) - 用于XLS,CSV,JSON,YAML和&c中表格数据集的Python模块。MIT - [GitHub](https://github.com/jazzband/tablib) (👨‍💻 120 · 🔀 540 · 📦 15K · 📋 240 - 12% open · ⏱️ 11.07.2022): @@ -5719,7 +5719,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge tablib ```
-
xmltodict (🥈31 · ⭐ 4.9K) - Python module that makes working with XML feel like you are.. MIT +
xmltodict (🥈31 · ⭐ 4.9K) - 像处理JSON一样处理XML。MIT - [GitHub](https://github.com/martinblech/xmltodict) (👨‍💻 49 · 🔀 430 · 📦 42K · 📋 220 - 27% open · ⏱️ 08.05.2022): @@ -5735,7 +5735,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge xmltodict ```
-
python-magic (🥈29 · ⭐ 2.2K) - A python wrapper for libmagic. ❗Unlicensed +
python-magic (🥈29 · ⭐ 2.2K) - 用于libmagic的python包装器。❗Unlicensed - [GitHub](https://github.com/ahupp/python-magic) (👨‍💻 55 · 🔀 240 · 📦 31K · 📋 180 - 15% open · ⏱️ 20.06.2022): @@ -5751,7 +5751,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge python-magic ```
-
xlrd (🥈29 · ⭐ 2K · 💤) - Please use openpyxl where you can... ❗Unlicensed +
xlrd (🥈29 · ⭐ 2K · 💤) - xlrd是python语言中用于读取excel表格内容的库。❗Unlicensed - [GitHub](https://github.com/python-excel/xlrd) (👨‍💻 51 · 🔀 420 · 📦 100K · ⏱️ 21.08.2021): @@ -5767,7 +5767,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge xlrd ```
-
csvkit (🥈28 · ⭐ 5.1K) - A suite of utilities for converting to and working with CSV, the king of.. MIT +
csvkit (🥈28 · ⭐ 5.1K) - 一套实用工具,可转换为CSV并操作。MIT - [GitHub](https://github.com/wireservice/csvkit) (👨‍💻 100 · 🔀 560 · 📦 1.1K · 📋 860 - 8% open · ⏱️ 11.04.2022): @@ -5783,7 +5783,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge csvkit ```
-
TensorFlow Datasets (🥈28 · ⭐ 3.4K) - TFDS is a collection of datasets ready to use with.. Apache-2 +
TensorFlow Datasets (🥈28 · ⭐ 3.4K) - TFDS是一个高级数据集合。Apache-2 - [GitHub](https://github.com/tensorflow/datasets) (👨‍💻 260 · 🔀 1.3K · 📋 980 - 36% open · ⏱️ 25.08.2022): @@ -5795,7 +5795,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s pip install tensorflow-datasets ```
-
PDFMiner (🥈26 · ⭐ 4.9K · 💀) - Python PDF Parser (Not actively maintained). Check out pdfminer.six. MIT +
PDFMiner (🥈26 · ⭐ 4.9K · 💀) - Python PDF解析器。MIT - [GitHub](https://github.com/euske/pdfminer) (👨‍💻 28 · 🔀 980 · 📦 3.2K · 📋 240 - 82% open · ⏱️ 18.01.2020): @@ -5811,7 +5811,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge pdfminer ```
-
smart-open (🥈26 · ⭐ 2.6K) - Utils for streaming large files (S3, HDFS, gzip, bz2...). MIT +
smart-open (🥈26 · ⭐ 2.6K) - 用于大文件(S3,HDFS,gzip,bz2 ...)流传输的实用程序。MIT - [GitHub](https://github.com/RaRe-Technologies/smart_open) (👨‍💻 96 · 🔀 310 · 📋 360 - 16% open · ⏱️ 21.08.2022): @@ -5823,7 +5823,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s pip install smart-open ```
-
snorkel (🥉25 · ⭐ 5.2K) - A system for quickly generating training data with weak supervision. Apache-2 +
snorkel (🥉25 · ⭐ 5.2K) - 在弱监督环境下快速生成训练数据的系统。Apache-2 - [GitHub](https://github.com/snorkel-team/snorkel) (👨‍💻 78 · 🔀 820 · 📥 980 · 📦 190 · 📋 970 - 1% open · ⏱️ 29.07.2022): @@ -5839,7 +5839,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge snorkel ```
-
Intake (🥉24 · ⭐ 800) - Intake is a lightweight package for finding, investigating, loading and.. BSD-2 +
Intake (🥉24 · ⭐ 800) - Intake是一个轻量级的程序包,用于查找,调查,加载等。BSD-2 - [GitHub](https://github.com/intake/intake) (👨‍💻 78 · 🔀 120 · 📦 480 · 📋 310 - 27% open · ⏱️ 22.08.2022): @@ -5855,7 +5855,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge intake ```
-
textract (🥉23 · ⭐ 3.3K) - extract text from any document. no muss. no fuss. MIT +
textract (🥉23 · ⭐ 3.3K) - 从任何文档中提取文本。MIT - [GitHub](https://github.com/deanmalmgren/textract) (👨‍💻 40 · 🔀 470 · 📋 210 - 39% open · ⏱️ 10.03.2022): @@ -5871,7 +5871,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge textract ```
-
SDV (🥉23 · ⭐ 980) - Synthetic Data Generation for tabular, relational and time series data. ❗Unlicensed +
SDV (🥉23 · ⭐ 980) - 用于表格,关系和时间序列数据的综合数据生成。❗Unlicensed - [GitHub](https://github.com/sdv-dev/SDV) (👨‍💻 41 · 🔀 160 · 📦 81 · 📋 580 - 20% open · ⏱️ 19.08.2022): @@ -5883,7 +5883,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s pip install sdv ```
-
tabulator-py (🥉22 · ⭐ 230 · 💀) - Python library for reading and writing tabular data via streams. MIT +
tabulator-py (🥉22 · ⭐ 230 · 💀) - 用于读取和写入图像数据的Python库。MIT - [GitHub](https://github.com/frictionlessdata/tabulator-py) (👨‍💻 27 · 🔀 42 · 📦 830 · ⏱️ 22.03.2021): @@ -5899,7 +5899,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge tabulator-py ```
-
pyexcel-xlsx (🥉22 · ⭐ 110 · 💀) - A wrapper library to read, manipulate and write data.. ❗Unlicensed +
pyexcel-xlsx (🥉22 · ⭐ 110 · 💀) - 一个包装器库,用于在xlsx和xlsm等文件格式中读取,操作和写入数据。❗Unlicensed - [GitHub](https://github.com/pyexcel/pyexcel-xlsx) (👨‍💻 4 · 🔀 23 · 📥 51 · 📦 1.7K · 📋 34 - 26% open · ⏱️ 28.11.2020): @@ -5915,7 +5915,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge pyexcel-xlsx ```
-
messytables (🥉21 · ⭐ 380 · 💀) - Tools for parsing messy tabular data. This is now.. ❗Unlicensed +
messytables (🥉21 · ⭐ 380 · 💀) - 解析混乱的表格数据的工具。❗Unlicensed - [GitHub](https://github.com/okfn/messytables) (👨‍💻 44 · 🔀 100 · 📦 250 · 📋 85 - 35% open · ⏱️ 13.11.2019): @@ -5927,7 +5927,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s pip install messytables ```
-
rows (🥉20 · ⭐ 810) - A common, beautiful interface to tabular data, no matter the format. ❗️LGPL-3.0 +
rows (🥉20 · ⭐ 810) - 通用美观的表格数据界面。❗️LGPL-3.0 - [GitHub](https://github.com/turicas/rows) (👨‍💻 31 · 🔀 140 · 📥 38 · 📦 140 · 📋 290 - 49% open · ⏱️ 18.08.2022): @@ -5939,7 +5939,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s pip install rows ```
-
Camelot (🥉19 · ⭐ 3.3K · 💀) - Camelot: PDF Table Extraction for Humans. ❗Unlicensed +
Camelot (🥉19 · ⭐ 3.3K · 💀) - Camelot:简单的PDF表提取。❗Unlicensed - [GitHub](https://github.com/atlanhq/camelot) (👨‍💻 23 · 🔀 330 · 📋 360 - 23% open · ⏱️ 15.10.2019): @@ -5951,7 +5951,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s pip install camelot-py ```
-
pandas-datareader (🥉19 · ⭐ 2.4K) - Extract data from a wide range of Internet sources.. ❗Unlicensed +
pandas-datareader (🥉19 · ⭐ 2.4K) - 从各种各样的网络来源中提取数据。❗Unlicensed - [GitHub](https://github.com/pydata/pandas-datareader) (👨‍💻 85 · 🔀 590 · 📋 500 - 20% open · ⏱️ 16.03.2022): @@ -5967,7 +5967,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s conda install -c conda-forge pandas-datareader ```
-
datatest (🥉19 · ⭐ 260 · 💤) - Tools for test driven data-wrangling and data validation. ❗Unlicensed +
datatest (🥉19 · ⭐ 260 · 💤) - 用于测试驱动的数据整理和数据验证的工具。❗Unlicensed - [GitHub](https://github.com/shawnbrown/datatest) (👨‍💻 7 · 🔀 13 · 📦 74 · 📋 55 - 21% open · ⏱️ 05.12.2021): @@ -5979,7 +5979,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s pip install datatest ```
-
Singer (🥉17 · ⭐ 1K · 💀) - Standard for moving data between databases, web APIs, files,.. ❗️AGPL-3.0 +
Singer (🥉17 · ⭐ 1K · 💀) - 在数据库,Web API,文件,队列等之间移动数据的标准。❗️AGPL-3.0 - [GitHub](https://github.com/singer-io/getting-started) (👨‍💻 26 · 🔀 140 · 📋 38 - 52% open · ⏱️ 29.04.2021): @@ -5991,7 +5991,7 @@ _Libraries for loading, collecting, and extracting data from a variety of data s pip install singer-python ```
-
openpyxl (🥉16 · ⭐ 45) - A Python library to read/write Excel 2010 xlsx/xlsm files. MIT +
openpyxl (🥉16 · ⭐ 45) - 一个用于读取/写入Excel 2010 xlsx/xlsm文件的Python库。MIT - [PyPi](https://pypi.org/project/openpyxl) (📥 35M / month): ``` @@ -6013,23 +6013,23 @@ _Libraries for loading, collecting, and extracting data from a variety of data s

-## Web Scraping & Crawling +## 网页抓取和爬虫 -Back to top +Back to top -_Libraries for web scraping, crawling, downloading, and mining as well as libraries._ +_用于Web抓取、爬虫,下载和挖掘的库以及库。_ 🔗 Python Web Scraping ( ⭐ 1.6K) - Collection of web-scraping and crawling libraries.
-## Data Pipelines & Streaming +## 数据管道和流处理 -Back to top +Back to top -_Libraries for data batch- and stream-processing, workflow automation, job scheduling, and other data pipeline tasks._ +_用于数据批处理和流处理,工作流自动化,作业调度和其他数据管道任务的库。_ -
Celery (🥇36 · ⭐ 20K) - Asynchronous task queue/job queue based on distributed message.. ❗Unlicensed +
Celery (🥇36 · ⭐ 20K) - 基于分布式消息传递的异步任务队列/作业队列。❗Unlicensed - [GitHub](https://github.com/celery/celery) (👨‍💻 1.2K · 🔀 4.2K · 📦 75K · 📋 4.7K - 10% open · ⏱️ 25.08.2022): @@ -6045,7 +6045,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched conda install -c conda-forge celery ```
-
luigi (🥇34 · ⭐ 16K) - Luigi is a Python module that helps you build complex pipelines of batch.. Apache-2 +
luigi (🥇34 · ⭐ 16K) - Luigi是一个Python模块,可帮助您构建复杂的批处理管道。Apache-2 - [GitHub](https://github.com/spotify/luigi) (👨‍💻 590 · 🔀 2.3K · 📦 1.8K · 📋 940 - 7% open · ⏱️ 18.08.2022): @@ -6061,7 +6061,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched conda install -c anaconda luigi ```
-
joblib (🥇33 · ⭐ 2.9K) - Computing with Python functions. BSD-3 +
joblib (🥇33 · ⭐ 2.9K) - 使用Python函数进行计算。BSD-3 - [GitHub](https://github.com/joblib/joblib) (👨‍💻 110 · 🔀 330 · 📦 210K · 📋 710 - 43% open · ⏱️ 20.05.2022): @@ -6077,7 +6077,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched conda install -c conda-forge joblib ```
-
rq (🥇32 · ⭐ 8.5K) - Simple job queues for Python. ❗Unlicensed +
rq (🥇32 · ⭐ 8.5K) - 适用于Python的简单作业队列。❗Unlicensed - [GitHub](https://github.com/rq/rq) (👨‍💻 270 · 🔀 1.3K · 📦 11K · 📋 980 - 19% open · ⏱️ 21.08.2022): @@ -6093,7 +6093,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched conda install -c conda-forge rq ```
-
Dagster (🥇32 · ⭐ 5.3K) - A data orchestrator for machine learning, analytics, and ETL. Apache-2 +
Dagster (🥇32 · ⭐ 5.3K) - 用于机器学习,分析和ETL的数据协调器。Apache-2 - [GitHub](https://github.com/dagster-io/dagster) (👨‍💻 230 · 🔀 650 · 📦 500 · 📋 4.4K - 23% open · ⏱️ 25.08.2022): @@ -6109,7 +6109,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched conda install -c conda-forge dagster ```
-
Beam (🥈31 · ⭐ 5.8K) - Unified programming model to define and execute data processing.. Apache-2 +
Beam (🥈31 · ⭐ 5.8K) - 统一的编程模型,用于定义和执行数据处理。Apache-2 - [GitHub](https://github.com/apache/beam) (👨‍💻 1.3K · 🔀 3.5K · 📋 4.4K - 89% open · ⏱️ 25.08.2022): @@ -6121,7 +6121,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install apache-beam ```
-
dbt (🥈30 · ⭐ 5.4K) - dbt (data build tool) enables data analysts and engineers to transform.. Apache-2 +
dbt (🥈30 · ⭐ 5.4K) - dbt(数据构建工具)方便数据分析人员和工程师快速使用。Apache-2 - [GitHub](https://github.com/dbt-labs/dbt-core) (👨‍💻 230 · 🔀 960 · 📥 520 · 📦 660 · 📋 3K - 10% open · ⏱️ 25.08.2022): @@ -6137,7 +6137,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched conda install -c conda-forge dbt ```
-
Airflow (🥈29 · ⭐ 28K) - Platform to programmatically author, schedule, and monitor workflows. Apache-2 +
Airflow (🥈29 · ⭐ 28K) - 代码实现的创建,安排和监视工作流的平台。Apache-2 - [GitHub](https://github.com/apache/airflow) (👨‍💻 2.5K · 🔀 11K · 📥 340K · 📋 6K - 11% open · ⏱️ 25.08.2022): @@ -6157,7 +6157,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched docker pull apache/airflow ```
-
mrjob (🥈29 · ⭐ 2.6K · 💀) - Run MapReduce jobs on Hadoop or Amazon Web Services. Apache-2 +
mrjob (🥈29 · ⭐ 2.6K · 💀) - 在Hadoop或Amazon Web Services上运行MapReduce作业。Apache-2 - [GitHub](https://github.com/Yelp/mrjob) (👨‍💻 140 · 🔀 580 · 📦 1.1K · 📋 1.3K - 15% open · ⏱️ 16.11.2020): @@ -6173,7 +6173,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched conda install -c conda-forge mrjob ```
-
Prefect (🥈28 · ⭐ 9.9K) - The easiest way to automate your data. Apache-2 +
Prefect (🥈28 · ⭐ 9.9K) - 自动化数据的最简单方法。Apache-2 - [GitHub](https://github.com/PrefectHQ/prefect) (👨‍💻 60 · 🔀 950 · 📦 1.1K · 📋 2.6K - 25% open · ⏱️ 25.08.2022): @@ -6189,7 +6189,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched conda install -c conda-forge prefect ```
-
Kedro (🥈28 · ⭐ 7.5K) - A Python framework for creating reproducible, maintainable and modular.. Apache-2 +
Kedro (🥈28 · ⭐ 7.5K) - 用于创建可重现,可维护和模块化的Python框架。Apache-2 - [GitHub](https://github.com/kedro-org/kedro) (👨‍💻 160 · 🔀 680 · 📦 1K · 📋 870 - 17% open · ⏱️ 25.08.2022): @@ -6201,7 +6201,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install kedro ```
-
petl (🥈28 · ⭐ 1K) - Python Extract Transform and Load Tables of Data. MIT +
petl (🥈28 · ⭐ 1K) - Python提取转换并加载数据表。MIT - [GitHub](https://github.com/petl-developers/petl) (👨‍💻 55 · 🔀 170 · 📦 790 · 📋 440 - 16% open · ⏱️ 21.08.2022): @@ -6217,7 +6217,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched conda install -c conda-forge petl ```
-
PyFunctional (🥈26 · ⭐ 2.1K) - Python library for creating data pipelines with chain functional.. MIT +
PyFunctional (🥈26 · ⭐ 2.1K) - 用于创建具有链功能的数据管道的Python库。MIT - [GitHub](https://github.com/EntilZha/PyFunctional) (👨‍💻 26 · 🔀 110 · 📦 460 · 📋 130 - 5% open · ⏱️ 05.08.2022): @@ -6229,7 +6229,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install pyfunctional ```
-
Great Expectations (🥈25 · ⭐ 7.1K) - Always know what to expect from your data. Apache-2 +
Great Expectations (🥈25 · ⭐ 7.1K) - 通过数据测试,文档编制和性能分析,帮助数据团队加速流水线效率。Apache-2 - [GitHub](https://github.com/great-expectations/great_expectations) (👨‍💻 320 · 🔀 1K · 📋 1.4K - 12% open · ⏱️ 26.08.2022): @@ -6241,7 +6241,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install great_expectations ```
-
faust (🥈25 · ⭐ 6.3K · 💀) - Python Stream Processing. ❗Unlicensed +
faust (🥈25 · ⭐ 6.3K · 💀) - Python流处理。❗Unlicensed - [GitHub](https://github.com/robinhood/faust) (👨‍💻 94 · 🔀 530 · 📦 1.1K · 📋 460 - 48% open · ⏱️ 09.10.2020): @@ -6253,7 +6253,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install faust ```
-
TFX (🥈25 · ⭐ 1.8K) - TFX is an end-to-end platform for deploying production ML pipelines. Apache-2 +
TFX (🥈25 · ⭐ 1.8K) - TFX是用于部署机器学习生产流水线的端到端平台。Apache-2 - [GitHub](https://github.com/tensorflow/tfx) (👨‍💻 150 · 🔀 580 · 📋 780 - 26% open · ⏱️ 24.08.2022): @@ -6265,7 +6265,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install tfx ```
-
ploomber (🥉24 · ⭐ 2.6K) - Lean Data Science workflows: develop and test locally. Deploy to.. Apache-2 +
ploomber (🥉24 · ⭐ 2.6K) - 精益数据科学工作流程。Apache-2 - [GitHub](https://github.com/ploomber/ploomber) (👨‍💻 59 · 🔀 180 · 📦 51 · 📋 790 - 25% open · ⏱️ 26.08.2022): @@ -6277,7 +6277,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install ploomber ```
-
streamparse (🥉24 · ⭐ 1.5K) - Run Python in Apache Storm topologies. Pythonic API, CLI.. Apache-2 +
streamparse (🥉24 · ⭐ 1.5K) - 在Apache Storm拓扑中运行Python。 Pythonic API,CLI 等。Apache-2 - [GitHub](https://github.com/Parsely/streamparse) (👨‍💻 43 · 🔀 210 · 📦 55 · 📋 330 - 19% open · ⏱️ 18.07.2022): @@ -6289,7 +6289,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install streamparse ```
-
Hub (🥉23 · ⭐ 4.8K) - Fastest unstructured dataset management for TensorFlow/PyTorch... MPL-2.0 +
Hub (🥉23 · ⭐ 4.8K) - TensorFlow/PyTorch最快的非结构化数据集管理。MPL-2.0 - [GitHub](https://github.com/activeloopai/Hub) (👨‍💻 99 · 🔀 390 · 📋 380 - 11% open · ⏱️ 26.08.2022): @@ -6301,7 +6301,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install hub ```
-
bonobo (🥉21 · ⭐ 1.5K · 💀) - Extract Transform Load for Python 3.5+. Apache-2 +
bonobo (🥉21 · ⭐ 1.5K · 💀) - 提取适用于Python 3.5+的Transform Load。Apache-2 - [GitHub](https://github.com/python-bonobo/bonobo) (👨‍💻 37 · 🔀 130 · 📦 140 · 📋 180 - 39% open · ⏱️ 10.03.2021): @@ -6313,7 +6313,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install bonobo ```
-
TaskTiger (🥉21 · ⭐ 1.2K) - Python task queue using Redis. MIT +
TaskTiger (🥉21 · ⭐ 1.2K) - 使用Redis的Python任务队列。MIT - [GitHub](https://github.com/closeio/tasktiger) (👨‍💻 24 · 🔀 64 · 📦 23 · 📋 58 - 37% open · ⏱️ 25.04.2022): @@ -6325,7 +6325,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install tasktiger ```
-
pdpipe (🥉21 · ⭐ 680) - Easy pipelines for pandas DataFrames. MIT +
pdpipe (🥉21 · ⭐ 680) - pandas DataFrames的简单管道。MIT - [GitHub](https://github.com/pdpipe/pdpipe) (👨‍💻 10 · 🔀 42 · 📦 41 · 📋 51 - 31% open · ⏱️ 09.08.2022): @@ -6337,7 +6337,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install pdpipe ```
-
dpark (🥉20 · ⭐ 2.7K · 💀) - Python clone of Spark, a MapReduce alike framework in Python. BSD-3 +
dpark (🥉20 · ⭐ 2.7K · 💀) - dpark是Python中与MapReduce相似的框架。BSD-3 - [GitHub](https://github.com/douban/dpark) (👨‍💻 35 · 🔀 540 · 📦 5 · 📋 61 - 1% open · ⏱️ 25.12.2020): @@ -6349,7 +6349,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install dpark ```
-
zenml (🥉20 · ⭐ 2.3K) - ZenML : MLOps framework to create reproducible ML pipelines for.. Apache-2 +
zenml (🥉20 · ⭐ 2.3K) - ZenML:MLOps框架。Apache-2 - [GitHub](https://github.com/zenml-io/zenml) (👨‍💻 46 · 🔀 190 · 📋 110 - 22% open · ⏱️ 25.08.2022): @@ -6361,7 +6361,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install zenml ```
-
Pypeline (🥉20 · ⭐ 1.4K) - Concurrent data pipelines in Python . MIT +
Pypeline (🥉20 · ⭐ 1.4K) - Python中的并发数据管道。MIT - [GitHub](https://github.com/cgarciae/pypeln) (👨‍💻 13 · 🔀 80 · 📋 59 - 25% open · ⏱️ 23.06.2022): @@ -6373,7 +6373,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install pypeln ```
-
pysparkling (🥉20 · ⭐ 250 · 💀) - A pure Python implementation of Apache Spark's RDD and.. ❗Unlicensed +
pysparkling (🥉20 · ⭐ 250 · 💀) - Apache Spark的RDD和DStream的纯Python实现。❗Unlicensed - [GitHub](https://github.com/svenkreiss/pysparkling) (👨‍💻 10 · 🔀 42 · 📦 120 · 📋 27 - 22% open · ⏱️ 22.02.2021): @@ -6385,7 +6385,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install pysparkling ```
-
Optimus (🥉19 · ⭐ 1.2K) - Agile Data Preparation Workflows madeeasy with pandas, dask,.. Apache-2 +
Optimus (🥉19 · ⭐ 1.2K) - 基于pandas、dask等的敏捷数据预处理工作流程。Apache-2 - [GitHub](https://github.com/hi-primus/optimus) (👨‍💻 23 · 🔀 210 · 📋 230 - 14% open · ⏱️ 21.06.2022): @@ -6397,7 +6397,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install optimuspyspark ```
-
mrq (🥉19 · ⭐ 870 · 💀) - Mr. Queue - A distributed worker task queue in Python using Redis & gevent. MIT +
mrq (🥉19 · ⭐ 870 · 💀) - Mr. Queue - 使用Redis和gevent的Python中的分布式worker任务队列。MIT - [GitHub](https://github.com/pricingassistant/mrq) (👨‍💻 40 · 🔀 110 · 📦 29 · 📋 170 - 30% open · ⏱️ 13.12.2020): @@ -6409,7 +6409,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install mrq ```
-
BatchFlow (🥉19 · ⭐ 180) - BatchFlow helps you conveniently work with random or sequential.. Apache-2 +
BatchFlow (🥉19 · ⭐ 180) - BatchFlow可帮助您方便地使用随机或顺序调度数据进行机器学习任务。Apache-2 - [GitHub](https://github.com/analysiscenter/batchflow) (👨‍💻 32 · 🔀 40 · 📦 2 · 📋 100 - 28% open · ⏱️ 03.08.2022): @@ -6421,7 +6421,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install batchflow ```
-
spark-deep-learning (🥉17 · ⭐ 1.9K) - Deep Learning Pipelines for Apache Spark. Apache-2 +
spark-deep-learning (🥉17 · ⭐ 1.9K) - 适用于Apache Spark的深度学习管道。Apache-2 - [GitHub](https://github.com/databricks/spark-deep-learning) (👨‍💻 17 · 🔀 460 · 📦 24 · 📋 100 - 74% open · ⏱️ 21.03.2022): @@ -6429,7 +6429,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched git clone https://github.com/databricks/spark-deep-learning ```
-
Mara Pipelines (🥉17 · ⭐ 1.9K) - A lightweight opinionated ETL framework, halfway between plain.. MIT +
Mara Pipelines (🥉17 · ⭐ 1.9K) - 一个轻量级的ETL框架。MIT - [GitHub](https://github.com/mara/mara-pipelines) (👨‍💻 17 · 🔀 89 · 📋 30 - 53% open · ⏱️ 18.07.2022): @@ -6441,7 +6441,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install mara-pipelines ```
-
riko (🥉15 · ⭐ 1.6K · 💤) - A Python stream processing engine modeled after Yahoo! Pipes. MIT +
riko (🥉15 · ⭐ 1.6K · 💤) - 一个模仿Yahoo!的Python流处理引擎。MIT - [GitHub](https://github.com/nerevu/riko) (👨‍💻 18 · 🔀 68 · 📋 29 - 72% open · ⏱️ 28.12.2021): @@ -6453,7 +6453,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install riko ```
-
Databolt Flow (🥉15 · ⭐ 940 · 💤) - Python library for building highly effective data science.. MIT +
Databolt Flow (🥉15 · ⭐ 940 · 💤) - Python库,用于构建高效的数据科学工作流程。MIT - [GitHub](https://github.com/d6t/d6tflow) (👨‍💻 12 · 🔀 71 · 📦 20 · 📋 23 - 43% open · ⏱️ 28.09.2021): @@ -6465,7 +6465,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install d6tflow ```
-
flupy (🥉14 · ⭐ 170) - Fluent data pipelines for python and your shell. ❗Unlicensed +
flupy (🥉14 · ⭐ 170) - python中的流利数据管道。❗Unlicensed - [GitHub](https://github.com/olirice/flupy) (👨‍💻 6 · 🔀 12 · ⏱️ 17.02.2022): @@ -6477,7 +6477,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install flupy ```
-
bodywork-core (🥉13 · ⭐ 400) - MLOps tool for deploying machine learning projects to.. ❗️AGPL-3.0 +
bodywork-core (🥉13 · ⭐ 400) - MLOps工具,用于将机器学习项目部署到Kubernetes。❗️AGPL-3.0 - [GitHub](https://github.com/bodywork-ml/bodywork-core) (👨‍💻 4 · 🔀 18 · 📦 10 · 📋 77 - 25% open · ⏱️ 04.07.2022): @@ -6489,7 +6489,7 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched pip install bodywork-core ```
-
Botflow (🥉12 · ⭐ 1.2K · 💀) - Python Fast Dataflow programming framework for Data pipeline.. ❗Unlicensed +
Botflow (🥉12 · ⭐ 1.2K · 💀) - 适用于数据管道工作的Python快速数据流编程框架。❗Unlicensed - [GitHub](https://github.com/kkyon/botflow) (👨‍💻 11 · 🔀 100 · 📦 1 · 📋 5 - 60% open · ⏱️ 23.05.2019): @@ -6503,13 +6503,13 @@ _Libraries for data batch- and stream-processing, workflow automation, job sched

-## Distributed Machine Learning +## 分布式机器学习 -Back to top +Back to top -_Libraries that provide capabilities to distribute and parallelize machine learning tasks across large-scale compute infrastructure._ +_提供在大型计算基础架构中分布和并行化机器学习任务的功能的库。_ -
Ray (🥇35 · ⭐ 22K) - An open source framework that provides a simple, universal API for.. Apache-2 +
Ray (🥇35 · ⭐ 22K) - 一个开源代码框架,提供了用于构建分布式应用程序的简单通用API。Apache-2 - [GitHub](https://github.com/ray-project/ray) (👨‍💻 740 · 🔀 3.7K · 📦 5.7K · 📋 11K - 21% open · ⏱️ 26.08.2022): @@ -6521,7 +6521,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install ray ```
-
dask (🥇32 · ⭐ 10K) - Parallel computing with task scheduling. BSD-3 +
dask (🥇32 · ⭐ 10K) - 具有任务调度的并行计算。BSD-3 - [GitHub](https://github.com/dask/dask) (👨‍💻 550 · 🔀 1.5K · 📦 39K · 📋 4.4K - 15% open · ⏱️ 25.08.2022): @@ -6537,7 +6537,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn conda install -c conda-forge dask ```
-
horovod (🥇30 · ⭐ 13K) - Distributed training framework for TensorFlow, Keras, PyTorch,.. ❗Unlicensed +
horovod (🥇30 · ⭐ 13K) - 基于TensorFlow,Keras,PyTorch,MXNet等的分布式训练框架。❗Unlicensed - [GitHub](https://github.com/horovod/horovod) (👨‍💻 160 · 🔀 2K · 📦 650 · 📋 2.1K - 15% open · ⏱️ 17.08.2022): @@ -6549,7 +6549,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install horovod ```
-
dask.distributed (🥇30 · ⭐ 1.4K) - A distributed task scheduler for Dask. BSD-3 +
dask.distributed (🥇30 · ⭐ 1.4K) - Dask的分布式任务调度规划程序。BSD-3 - [GitHub](https://github.com/dask/distributed) (👨‍💻 280 · 🔀 620 · 📦 25K · 📋 2.9K - 33% open · ⏱️ 26.08.2022): @@ -6565,7 +6565,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn conda install -c conda-forge distributed ```
-
DeepSpeed (🥈28 · ⭐ 7.7K) - DeepSpeed is a deep learning optimization library that makes.. MIT +
DeepSpeed (🥈28 · ⭐ 7.7K) - DeepSpeed是一个深度学习优化库。MIT - [GitHub](https://github.com/microsoft/DeepSpeed) (👨‍💻 130 · 🔀 830 · 📦 340 · 📋 980 - 48% open · ⏱️ 25.08.2022): @@ -6581,7 +6581,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn docker pull deepspeed/deepspeed ```
-
DEAP (🥈27 · ⭐ 4.8K) - Distributed Evolutionary Algorithms in Python. ❗️LGPL-3.0 +
DEAP (🥈27 · ⭐ 4.8K) - Python中的分布式进化算法。❗️LGPL-3.0 - [GitHub](https://github.com/DEAP/deap) (👨‍💻 79 · 🔀 980 · 📦 2.8K · 📋 470 - 43% open · ⏱️ 08.08.2022): @@ -6597,7 +6597,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn conda install -c conda-forge deap ```
-
petastorm (🥈27 · ⭐ 1.5K) - Petastorm library enables single machine or distributed training.. Apache-2 +
petastorm (🥈27 · ⭐ 1.5K) - Petastorm库单机或分布式训练。Apache-2 - [GitHub](https://github.com/uber/petastorm) (👨‍💻 45 · 🔀 250 · 📥 340 · 📦 74 · 📋 280 - 49% open · ⏱️ 24.08.2022): @@ -6609,7 +6609,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install petastorm ```
-
BigDL (🥈26 · ⭐ 4K) - BigDL: Distributed Deep Learning Framework for Apache Spark. Apache-2 +
BigDL (🥈26 · ⭐ 4K) - BigDL:适用于Apache Spark的分布式深度学习框架。Apache-2 - [GitHub](https://github.com/intel-analytics/BigDL) (👨‍💻 170 · 🔀 970 · 📦 38 · 📋 1.4K - 30% open · ⏱️ 26.08.2022): @@ -6629,7 +6629,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn ```
-
FairScale (🥈26 · ⭐ 1.8K) - PyTorch extensions for high performance and large scale training. BSD-3 +
FairScale (🥈26 · ⭐ 1.8K) - PyTorch扩展用于高性能和大规模训练。BSD-3 - [GitHub](https://github.com/facebookresearch/fairscale) (👨‍💻 63 · 🔀 180 · 📦 490 · 📋 320 - 21% open · ⏱️ 26.08.2022): @@ -6641,7 +6641,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install fairscale ```
-
Elephas (🥈26 · ⭐ 1.5K) - Distributed Deep learning with Keras & Spark. MIT keras +
Elephas (🥈26 · ⭐ 1.5K) - 使用Keras和Spark进行分布式深度学习。MIT keras - [GitHub](https://github.com/maxpumperla/elephas) (👨‍💻 27 · 🔀 290 · 📦 56 · 📋 160 - 12% open · ⏱️ 30.03.2022): @@ -6653,7 +6653,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install elephas ```
-
Mesh (🥈26 · ⭐ 1.3K) - Mesh TensorFlow: Model Parallelism Made Easier. Apache-2 +
Mesh (🥈26 · ⭐ 1.3K) - Mesh TensorFlow:简化模型并行化。Apache-2 - [GitHub](https://github.com/tensorflow/mesh) (👨‍💻 48 · 🔀 220 · 📦 710 · 📋 78 - 82% open · ⏱️ 10.06.2022): @@ -6665,7 +6665,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install mesh-tensorflow ```
-
dask-ml (🥉25 · ⭐ 820) - Scalable Machine Learning with Dask. BSD-3 +
dask-ml (🥉25 · ⭐ 820) - 使用Dask进行可扩展的机器学习。BSD-3 - [GitHub](https://github.com/dask/dask-ml) (👨‍💻 76 · 🔀 230 · 📦 660 · 📋 440 - 45% open · ⏱️ 19.06.2022): @@ -6681,7 +6681,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn conda install -c conda-forge dask-ml ```
-
TensorFlowOnSpark (🥉23 · ⭐ 3.8K) - TensorFlowOnSpark brings TensorFlow programs to.. Apache-2 +
TensorFlowOnSpark (🥉23 · ⭐ 3.8K) - TensorFlowOnSpark将TensorFlow程序引入Spark。Apache-2 - [GitHub](https://github.com/yahoo/TensorFlowOnSpark) (👨‍💻 34 · 🔀 920 · 📋 360 - 2% open · ⏱️ 21.04.2022): @@ -6693,7 +6693,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install tensorflowonspark ```
-
analytics-zoo (🥉23 · ⭐ 2.5K) - Distributed Tensorflow, Keras and PyTorch on Apache.. Apache-2 +
analytics-zoo (🥉23 · ⭐ 2.5K) - Apache上的分布式Tensorflow,Keras和PyTorch。Apache-2 - [GitHub](https://github.com/intel-analytics/analytics-zoo) (👨‍💻 100 · 🔀 700 · 📦 3 · 📋 1.3K - 32% open · ⏱️ 01.06.2022): @@ -6705,7 +6705,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install analytics-zoo ```
-
Hivemind (🥉23 · ⭐ 1.1K) - Decentralized deep learning in PyTorch. Built to train models on.. MIT +
Hivemind (🥉23 · ⭐ 1.1K) - PyTorch中的分布式深度学习。专为训练模型而设计。MIT - [GitHub](https://github.com/learning-at-home/hivemind) (👨‍💻 23 · 🔀 67 · 📦 10 · 📋 120 - 28% open · ⏱️ 23.08.2022): @@ -6717,7 +6717,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install hivemind ```
-
mpi4py (🥉22 · ⭐ 570) - Python bindings for MPI. BSD-2 +
mpi4py (🥉22 · ⭐ 570) - MPI的Python接口。BSD-2 - [GitHub](https://github.com/mpi4py/mpi4py) (👨‍💻 21 · 🔀 78 · 📥 6.2K · 📋 84 - 11% open · ⏱️ 21.08.2022): @@ -6733,7 +6733,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn conda install -c conda-forge mpi4py ```
-
MMLSpark (🥉20 · ⭐ 3.5K) - Microsoft Machine Learning for Apache Spark. MIT +
MMLSpark (🥉20 · ⭐ 3.5K) - 适用于Apache Spark的Microsoft机器学习。MIT - [GitHub](https://github.com/microsoft/SynapseML) (👨‍💻 97 · 🔀 670 · 📋 570 - 39% open · ⏱️ 26.08.2022): @@ -6745,7 +6745,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install mmlspark ```
-
Apache Singa (🥉19 · ⭐ 2.7K) - a distributed deep learning platform. Apache-2 +
Apache Singa (🥉19 · ⭐ 2.7K) - 分布式深度学习平台。Apache-2 - [GitHub](https://github.com/apache/singa) (👨‍💻 79 · 🔀 780 · 📦 1 · 📋 79 - 21% open · ⏱️ 01.06.2022): @@ -6761,7 +6761,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn docker pull apache/singa ```
-
TensorFrames (🥉19 · ⭐ 760 · 💀) - [DEPRECATED] Tensorflow wrapper for DataFrames on.. Apache-2 +
TensorFrames (🥉19 · ⭐ 760 · 💀) - 用于DataFrames的Tensorflow包装器。Apache-2 - [GitHub](https://github.com/databricks/tensorframes) (👨‍💻 16 · 🔀 160 · 📋 92 - 53% open · ⏱️ 15.11.2019): @@ -6773,7 +6773,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install tensorframes ```
-
ipyparallel (🥉18 · ⭐ 2.3K) - Interactive Parallel Computing in Python. ❗Unlicensed +
ipyparallel (🥉18 · ⭐ 2.3K) - Python中的交互式并行计算。❗Unlicensed - [GitHub](https://github.com/ipython/ipyparallel) (👨‍💻 110 · 🔀 870 · 📋 330 - 15% open · ⏱️ 16.08.2022): @@ -6789,7 +6789,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn conda install -c conda-forge ipyparallel ```
-
Submit it (🥉18 · ⭐ 680) - Python 3.6+ toolbox for submitting jobs to Slurm. MIT +
Submit it (🥉18 · ⭐ 680) - 用于将作业提交到Slurm的Python工具箱。MIT - [GitHub](https://github.com/facebookincubator/submitit) (👨‍💻 23 · 🔀 74 · 📋 71 - 32% open · ⏱️ 23.08.2022): @@ -6805,7 +6805,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn conda install -c conda-forge submitit ```
-
sk-dist (🥉18 · ⭐ 280 · 💀) - Distributed scikit-learn meta-estimators in PySpark. Apache-2 +
sk-dist (🥉18 · ⭐ 280 · 💀) - PySpark中的分布式scikit学习元估计器。Apache-2 - [GitHub](https://github.com/Ibotta/sk-dist) (👨‍💻 7 · 🔀 49 · 📦 10 · 📋 17 - 41% open · ⏱️ 07.07.2021): @@ -6817,7 +6817,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install sk-dist ```
-
somoclu (🥉17 · ⭐ 240 · 💤) - Massively parallel self-organizing maps: accelerate training on.. MIT +
somoclu (🥉17 · ⭐ 240 · 💤) - 大规模并行的自组织图:加速训练。MIT - [GitHub](https://github.com/peterwittek/somoclu) (👨‍💻 19 · 🔀 62 · 📥 1.6K · 📋 130 - 18% open · ⏱️ 31.10.2021): @@ -6833,7 +6833,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn conda install -c conda-forge somoclu ```
-
BytePS (🥉16 · ⭐ 3.3K) - A high performance and generic framework for distributed DNN training. Apache-2 +
BytePS (🥉16 · ⭐ 3.3K) - 分布式DNN训练的高性能通用框架。Apache-2 - [GitHub](https://github.com/bytedance/byteps) (👨‍💻 19 · 🔀 450 · 📋 260 - 38% open · ⏱️ 10.02.2022): @@ -6849,7 +6849,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn docker pull bytepsimage/tensorflow ```
-
Fiber (🥉16 · ⭐ 980 · 💀) - Distributed Computing for AI Made Simple. Apache-2 +
Fiber (🥉16 · ⭐ 980 · 💀) - 简化了AI的分布式计算。Apache-2 - [GitHub](https://github.com/uber/fiber) (👨‍💻 5 · 🔀 110 · 📦 43 · 📋 25 - 68% open · ⏱️ 15.03.2021): @@ -6861,7 +6861,7 @@ _Libraries that provide capabilities to distribute and parallelize machine learn pip install fiber ```
-
LazyCluster (🥉13 · ⭐ 43 · 💤) - Distributed machine learning made simple. Apache-2 +
LazyCluster (🥉13 · ⭐ 43 · 💤) - 分布式机器学习框架。Apache-2 - [GitHub](https://github.com/ml-tooling/lazycluster) (👨‍💻 2 · 🔀 9 · 📦 17 · ⏱️ 19.08.2021): @@ -6875,13 +6875,13 @@ _Libraries that provide capabilities to distribute and parallelize machine learn

-## Hyperparameter Optimization & AutoML +## 超参数优化和AutoML -Back to top +Back to top -_Libraries for hyperparameter optimization, automl and neural architecture search._ +_用于超参数优化,自动机器学习和神经体系结构搜索的库。_ -
Optuna (🥇34 · ⭐ 6.8K) - A hyperparameter optimization framework. MIT +
Optuna (🥇34 · ⭐ 6.8K) - 超参数优化框架。MIT - [GitHub](https://github.com/optuna/optuna) (👨‍💻 200 · 🔀 730 · 📦 4K · 📋 1.2K - 7% open · ⏱️ 26.08.2022): @@ -6897,7 +6897,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc conda install -c conda-forge optuna ```
-
NNI (🥇30 · ⭐ 12K) - An open source AutoML toolkit for automate machine learning lifecycle,.. MIT +
NNI (🥇30 · ⭐ 12K) - 一个开源AutoML工具箱,用于自动化机器学习生命周期。MIT - [GitHub](https://github.com/microsoft/nni) (👨‍💻 180 · 🔀 1.6K · 📦 260 · 📋 1.7K - 17% open · ⏱️ 24.08.2022): @@ -6909,7 +6909,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install nni ```
-
AutoKeras (🥇30 · ⭐ 8.6K) - AutoML library for deep learning. Apache-2 +
AutoKeras (🥇30 · ⭐ 8.6K) - 用于深度学习的AutoML库。Apache-2 - [GitHub](https://github.com/keras-team/autokeras) (👨‍💻 140 · 🔀 1.3K · 📥 7.4K · 📦 350 · 📋 840 - 11% open · ⏱️ 25.08.2022): @@ -6921,7 +6921,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install autokeras ```
-
Keras Tuner (🥇30 · ⭐ 2.6K) - Hyperparameter tuning for humans. Apache-2 +
Keras Tuner (🥇30 · ⭐ 2.6K) - 简单易用的超参数调整。Apache-2 - [GitHub](https://github.com/keras-team/keras-tuner) (👨‍💻 50 · 🔀 330 · 📦 1.6K · 📋 400 - 43% open · ⏱️ 25.08.2022): @@ -6933,7 +6933,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install keras-tuner ```
-
scikit-optimize (🥇30 · ⭐ 2.4K · 💤) - Sequential model-based optimization with a.. BSD-3 +
scikit-optimize (🥇30 · ⭐ 2.4K · 💤) - SMBO模型优化实现。BSD-3 - [GitHub](https://github.com/scikit-optimize/scikit-optimize) (👨‍💻 76 · 🔀 420 · 📦 3K · 📋 600 - 35% open · ⏱️ 12.10.2021): @@ -6949,7 +6949,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc conda install -c conda-forge scikit-optimize ```
-
TPOT (🥈29 · ⭐ 8.7K) - A Python Automated Machine Learning tool that optimizes machine.. ❗️LGPL-3.0 +
TPOT (🥈29 · ⭐ 8.7K) - Python自动化机器学习工具。❗️LGPL-3.0 - [GitHub](https://github.com/EpistasisLab/tpot) (👨‍💻 110 · 🔀 1.5K · 📦 1.6K · 📋 860 - 29% open · ⏱️ 29.07.2022): @@ -6965,7 +6965,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc conda install -c conda-forge tpot ```
-
auto-sklearn (🥈29 · ⭐ 6.5K) - Automated Machine Learning with scikit-learn. BSD-3 +
auto-sklearn (🥈29 · ⭐ 6.5K) - 使用scikit-learn的自动化机器学习。BSD-3 - [GitHub](https://github.com/automl/auto-sklearn) (👨‍💻 86 · 🔀 1.2K · 📥 37 · 📦 310 · 📋 920 - 12% open · ⏱️ 22.08.2022): @@ -6977,7 +6977,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install auto-sklearn ```
-
Bayesian Optimization (🥈29 · ⭐ 6.2K) - A Python implementation of global optimization with.. MIT +
Bayesian Optimization (🥈29 · ⭐ 6.2K) - 全局优化的Python实现。MIT - [GitHub](https://github.com/fmfn/BayesianOptimization) (👨‍💻 35 · 🔀 1.3K · 📥 96 · 📦 1.3K · 📋 260 - 7% open · ⏱️ 17.08.2022): @@ -6989,7 +6989,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install bayesian-optimization ```
-
Hyperopt (🥈28 · ⭐ 6.4K · 💤) - Distributed Asynchronous Hyperparameter Optimization in.. ❗Unlicensed +
Hyperopt (🥈28 · ⭐ 6.4K · 💤) - Python中的分布式异步超参数优化。❗Unlicensed - [GitHub](https://github.com/hyperopt/hyperopt) (👨‍💻 93 · 🔀 860 · 📦 7.4K · 📋 610 - 61% open · ⏱️ 29.11.2021): @@ -7005,7 +7005,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc conda install -c conda-forge hyperopt ```
-
AutoGluon (🥈26 · ⭐ 4.7K) - AutoGluon: AutoML for Text, Image, and Tabular Data. Apache-2 +
AutoGluon (🥈26 · ⭐ 4.7K) - AutoGluon:用于文本,图像和表格数据的AutoML。Apache-2 - [GitHub](https://github.com/awslabs/autogluon) (👨‍💻 85 · 🔀 620 · 📦 160 · 📋 740 - 21% open · ⏱️ 25.08.2022): @@ -7017,7 +7017,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install autogluon ```
-
BoTorch (🥈26 · ⭐ 2.3K) - Bayesian optimization in PyTorch. MIT +
BoTorch (🥈26 · ⭐ 2.3K) - PyTorch中的贝叶斯优化。MIT - [GitHub](https://github.com/pytorch/botorch) (👨‍💻 80 · 🔀 260 · 📦 300 · 📋 290 - 15% open · ⏱️ 25.08.2022): @@ -7029,7 +7029,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install botorch ```
-
Ax (🥈26 · ⭐ 1.9K) - Adaptive Experimentation Platform. MIT +
Ax (🥈26 · ⭐ 1.9K) - 自适应实验平台。MIT - [GitHub](https://github.com/facebook/Ax) (👨‍💻 120 · 🔀 210 · 📦 310 · 📋 430 - 8% open · ⏱️ 25.08.2022): @@ -7041,7 +7041,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install ax-platform ```
-
Hyperas (🥈24 · ⭐ 2.1K · 💤) - Keras + Hyperopt: A very simple wrapper for convenient.. MIT +
Hyperas (🥈24 · ⭐ 2.1K · 💤) - Keras + Hyperopt:一个非常简单的包装,方便使用。MIT - [GitHub](https://github.com/maxpumperla/hyperas) (👨‍💻 21 · 🔀 300 · 📦 250 · 📋 250 - 37% open · ⏱️ 19.11.2021): @@ -7053,7 +7053,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install hyperas ```
-
mljar-supervised (🥈24 · ⭐ 2K) - Automated Machine Learning Pipeline with Feature Engineering.. MIT +
mljar-supervised (🥈24 · ⭐ 2K) - 使用scikit-learn的自动化机器学习。MIT - [GitHub](https://github.com/mljar/mljar-supervised) (👨‍💻 19 · 🔀 280 · 📦 50 · 📋 490 - 19% open · ⏱️ 16.08.2022): @@ -7065,7 +7065,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install mljar-supervised ```
-
nevergrad (🥈23 · ⭐ 3.3K) - A Python toolbox for performing gradient-free optimization. MIT +
nevergrad (🥈23 · ⭐ 3.3K) - 用于执行无梯度优化(gradient-free optimization)的Python工具箱。MIT - [GitHub](https://github.com/facebookresearch/nevergrad) (👨‍💻 50 · 🔀 310 · 📦 370 · 📋 220 - 30% open · ⏱️ 10.08.2022): @@ -7081,7 +7081,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc conda install -c conda-forge nevergrad ```
-
GPyOpt (🥈23 · ⭐ 830 · 💀) - Gaussian Process Optimization using GPy. BSD-3 +
GPyOpt (🥈23 · ⭐ 830 · 💀) - 使用GPy进行高斯过程优化。BSD-3 - [GitHub](https://github.com/SheffieldML/GPyOpt) (👨‍💻 49 · 🔀 250 · 📦 310 · 📋 290 - 35% open · ⏱️ 05.11.2020): @@ -7093,7 +7093,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install gpyopt ```
-
featuretools (🥈22 · ⭐ 6.3K) - An open source python library for automated feature engineering. BSD-3 +
featuretools (🥈22 · ⭐ 6.3K) - 一个用于自动化特征工程的开源python库。BSD-3 - [GitHub](https://github.com/alteryx/featuretools) (👨‍💻 67 · 🔀 800 · 📋 850 - 18% open · ⏱️ 24.08.2022): @@ -7109,7 +7109,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc conda install -c conda-forge featuretools ```
-
AdaNet (🥈22 · ⭐ 3.4K · 💤) - Fast and flexible AutoML with learning guarantees. Apache-2 +
AdaNet (🥈22 · ⭐ 3.4K · 💤) - 具有学习保证的快速灵活的AutoML。Apache-2 - [GitHub](https://github.com/tensorflow/adanet) (👨‍💻 27 · 🔀 520 · 📦 44 · 📋 110 - 56% open · ⏱️ 30.08.2021): @@ -7121,7 +7121,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install adanet ```
-
Talos (🥈22 · ⭐ 1.5K) - Hyperparameter Optimization for TensorFlow, Keras and PyTorch. MIT +
Talos (🥈22 · ⭐ 1.5K) - TensorFlow,Keras和PyTorch的超参数优化。MIT - [GitHub](https://github.com/autonomio/talos) (👨‍💻 22 · 🔀 260 · 📦 150 · 📋 400 - 6% open · ⏱️ 23.04.2022): @@ -7133,7 +7133,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install talos ```
-
Orion (🥈22 · ⭐ 240) - Asynchronous Distributed Hyperparameter Optimization. ❗Unlicensed +
Orion (🥈22 · ⭐ 240) - 异步分布式超参数优化。❗Unlicensed - [GitHub](https://github.com/Epistimio/orion) (👨‍💻 27 · 🔀 43 · 📦 73 · 📋 350 - 52% open · ⏱️ 19.08.2022): @@ -7145,7 +7145,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install orion ```
-
MLBox (🥉21 · ⭐ 1.3K · 💀) - MLBox is a powerful Automated Machine Learning python library. ❗Unlicensed +
MLBox (🥉21 · ⭐ 1.3K · 💀) - MLBox是功能强大的自动机器学习python库。❗Unlicensed - [GitHub](https://github.com/AxeldeRomblay/MLBox) (👨‍💻 9 · 🔀 270 · 📦 28 · 📋 92 - 19% open · ⏱️ 25.08.2020): @@ -7157,7 +7157,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install mlbox ```
-
Neuraxle (🥉21 · ⭐ 540) - A Sklearn-like Framework for Hyperparameter Tuning and AutoML in.. Apache-2 +
Neuraxle (🥉21 · ⭐ 540) - 类似于Sklearn的超参数调整和AutoML输入框架。Apache-2 - [GitHub](https://github.com/Neuraxio/Neuraxle) (👨‍💻 7 · 🔀 52 · 📦 34 · 📋 320 - 19% open · ⏱️ 16.08.2022): @@ -7169,7 +7169,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install neuraxle ```
-
optunity (🥉21 · ⭐ 390 · 💀) - optimization routines for hyperparameter tuning. BSD-3 +
optunity (🥉21 · ⭐ 390 · 💀) - 超参数优化的优化例程。BSD-3 - [GitHub](https://github.com/claesenm/optunity) (👨‍💻 9 · 🔀 75 · 📥 67 · 📦 81 · 📋 97 - 50% open · ⏱️ 11.05.2020): @@ -7181,7 +7181,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install optunity ```
-
HpBandSter (🥉20 · ⭐ 540) - a distributed Hyperband implementation on Steroids. BSD-3 +
HpBandSter (🥉20 · ⭐ 540) - 分布式自动化机器学习库。BSD-3 - [GitHub](https://github.com/automl/HpBandSter) (👨‍💻 11 · 🔀 110 · 📦 240 · 📋 89 - 60% open · ⏱️ 22.04.2022): @@ -7205,7 +7205,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install auto_ml ```
-
lazypredict (🥉19 · ⭐ 380) - Lazy Predict help build a lot of basic models without much code.. MIT +
lazypredict (🥉19 · ⭐ 380) - Lazy Predict帮助您无需大量代码即可构建许多基本模型。MIT - [GitHub](https://github.com/shankarpandala/lazypredict) (👨‍💻 17 · 🔀 67 · 📦 320 · 📋 66 - 48% open · ⏱️ 25.05.2022): @@ -7217,7 +7217,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install lazypredict ```
-
Sherpa (🥉19 · ⭐ 310 · 💀) - Hyperparameter optimization that enables researchers to.. ❗️GPL-3.0 +
Sherpa (🥉19 · ⭐ 310 · 💀) - 超参数优化库。❗️GPL-3.0 - [GitHub](https://github.com/sherpa-ai/sherpa) (👨‍💻 43 · 🔀 48 · 📦 23 · 📋 57 - 28% open · ⏱️ 18.10.2020): @@ -7229,7 +7229,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install parameter-sherpa ```
-
SMAC3 (🥉18 · ⭐ 730) - Sequential Model-based Algorithm Configuration. ❗Unlicensed +
SMAC3 (🥉18 · ⭐ 730) - Sequential Model-based算法的配置。❗Unlicensed - [GitHub](https://github.com/automl/SMAC3) (👨‍💻 38 · 🔀 170 · 📋 400 - 18% open · ⏱️ 14.07.2022): @@ -7241,7 +7241,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install smac ```
-
Test Tube (🥉18 · ⭐ 720 · 💀) - Python library to easily log experiments and parallelize.. MIT +
Test Tube (🥉18 · ⭐ 720 · 💀) - 可轻松记录实验并进行并行化的Python库。MIT - [GitHub](https://github.com/williamFalcon/test-tube) (👨‍💻 16 · 🔀 67 · 📥 12 · 📋 44 - 52% open · ⏱️ 17.03.2020): @@ -7253,7 +7253,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install test_tube ```
-
sklearn-deap (🥉18 · ⭐ 700 · 💀) - Use evolutionary algorithms instead of gridsearch in.. MIT +
sklearn-deap (🥉18 · ⭐ 700 · 💀) - 使用进化算法而非gridsearch的超参数优化。MIT - [GitHub](https://github.com/rsteca/sklearn-deap) (👨‍💻 22 · 🔀 120 · 📦 35 · 📋 50 - 32% open · ⏱️ 30.07.2021): @@ -7265,7 +7265,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install sklearn-deap ```
-
Dragonfly (🥉18 · ⭐ 670) - An open source python library for scalable Bayesian optimisation. MIT +
Dragonfly (🥉18 · ⭐ 670) - 一个用于自动化特征工程的开源python库。MIT - [GitHub](https://github.com/dragonfly/dragonfly) (👨‍💻 13 · 🔀 210 · 📋 56 - 64% open · ⏱️ 14.07.2022): @@ -7277,7 +7277,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install dragonfly-opt ```
-
AlphaPy (🥉17 · ⭐ 800) - Automated Machine Learning [AutoML] with Python, scikit-learn, Keras,.. Apache-2 +
AlphaPy (🥉17 · ⭐ 800) - 使用scikit-learn的自动化机器学习。Apache-2 - [GitHub](https://github.com/ScottfreeLLC/AlphaPy) (👨‍💻 3 · 🔀 160 · 📦 3 · 📋 41 - 29% open · ⏱️ 23.04.2022): @@ -7289,7 +7289,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install alphapy ```
-
Auto Tune Models (🥉17 · ⭐ 520 · 💀) - Auto Tune Models - A multi-tenant, multi-data system for.. MIT +
Auto Tune Models (🥉17 · ⭐ 520 · 💀) - 自动调整模型。MIT - [GitHub](https://github.com/HDI-Project/ATM) (👨‍💻 16 · 🔀 130 · 📦 12 · 📋 89 - 20% open · ⏱️ 21.02.2020): @@ -7301,7 +7301,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install atm ```
-
Auto ViML (🥉17 · ⭐ 360) - Automatically Build Multiple ML Models with a Single Line of Code... Apache-2 +
Auto ViML (🥉17 · ⭐ 360) - 用单行代码自动构建多个ML模型。Apache-2 - [GitHub](https://github.com/AutoViML/Auto_ViML) (👨‍💻 6 · 🔀 81 · 📦 17 · 📋 21 - 19% open · ⏱️ 16.08.2022): @@ -7313,7 +7313,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install autoviml ```
-
Parfit (🥉17 · ⭐ 200 · 💀) - A package for parallelizing the fit and flexibly scoring of.. MIT +
Parfit (🥉17 · ⭐ 200 · 💀) - 并行化拟合与评估工具库。MIT - [GitHub](https://github.com/jmcarpenter2/parfit) (👨‍💻 4 · 🔀 25 · 📦 16 · 📋 11 - 54% open · ⏱️ 04.04.2020): @@ -7325,7 +7325,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install parfit ```
-
automl-gs (🥉16 · ⭐ 1.8K · 💀) - Provide an input CSV and a target field to predict, generate a.. MIT +
automl-gs (🥉16 · ⭐ 1.8K · 💀) - 提供输入CSV和目标字段以进行预测,自动生成可运行代码。MIT - [GitHub](https://github.com/minimaxir/automl-gs) (👨‍💻 7 · 🔀 160 · 📥 32 · 📋 30 - 80% open · ⏱️ 05.04.2019): @@ -7337,7 +7337,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install automl_gs ```
-
featurewiz (🥉16 · ⭐ 270) - Use advanced feature engineering strategies and select the.. Apache-2 +
featurewiz (🥉16 · ⭐ 270) - 自动化特征工程并进行特征选择的工具库。Apache-2 - [GitHub](https://github.com/AutoViML/featurewiz) (👨‍💻 4 · 🔀 57 · 📦 14 · ⏱️ 21.08.2022): @@ -7349,7 +7349,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install featurewiz ```
-
Advisor (🥉15 · ⭐ 1.5K · 💀) - Open-source implementation of Google Vizier for hyper parameters.. Apache-2 +
Advisor (🥉15 · ⭐ 1.5K · 💀) - Google Vizier的超参数开源实现。Apache-2 - [GitHub](https://github.com/tobegit3hub/advisor) (👨‍💻 11 · 🔀 260 · 📋 32 - 59% open · ⏱️ 11.11.2019): @@ -7365,7 +7365,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc docker pull tobegit3hub/advisor ```
-
Xcessiv (🥉15 · ⭐ 1.3K · 💀) - A web-based application for quick, scalable, and automated.. Apache-2 +
Xcessiv (🥉15 · ⭐ 1.3K · 💀) - 基于Web的应用程序,高效、可扩展且自动化。Apache-2 - [GitHub](https://github.com/reiinakano/xcessiv) (👨‍💻 6 · 🔀 110 · 📦 1 · 📋 34 - 61% open · ⏱️ 21.08.2017): @@ -7377,7 +7377,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install xcessiv ```
-
HyperparameterHunter (🥉15 · ⭐ 690 · 💀) - Easy hyperparameter optimization and automatic result.. MIT +
HyperparameterHunter (🥉15 · ⭐ 690 · 💀) - 轻松进行超参数优化和自动结果评估。MIT - [GitHub](https://github.com/HunterMcGushion/hyperparameter_hunter) (👨‍💻 4 · 🔀 88 · 📥 330 · 📋 120 - 27% open · ⏱️ 20.01.2021): @@ -7389,7 +7389,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install hyperparameter-hunter ```
-
ENAS (🥉13 · ⭐ 2.6K · 💀) - PyTorch implementation of Efficient Neural Architecture Search via.. Apache-2 +
ENAS (🥉13 · ⭐ 2.6K · 💀) - Efficient Neural Architecture Search的Pytorch实现。Apache-2 - [GitHub](https://github.com/carpedm20/ENAS-pytorch) (👨‍💻 6 · 🔀 470 · 📋 44 - 84% open · ⏱️ 16.06.2020): @@ -7397,7 +7397,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc git clone https://github.com/carpedm20/ENAS-pytorch ```
-
Auptimizer (🥉13 · ⭐ 190 · 💀) - An automatic ML model optimization tool. ❗️GPL-3.0 +
Auptimizer (🥉13 · ⭐ 190 · 💀) - 自动ML模型优化工具。❗️GPL-3.0 - [GitHub](https://github.com/LGE-ARC-AdvancedAI/auptimizer) (👨‍💻 11 · 🔀 22 · 📋 6 - 16% open · ⏱️ 03.03.2021): @@ -7409,7 +7409,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install auptimizer ```
-
Hypermax (🥉12 · ⭐ 100 · 💀) - Better, faster hyper-parameter optimization. BSD-3 +
Hypermax (🥉12 · ⭐ 100 · 💀) - 更好更快的超参数优化。BSD-3 - [GitHub](https://github.com/electricbrainio/hypermax) (👨‍💻 9 · 🔀 13 · 📦 4 · 📋 5 - 60% open · ⏱️ 02.08.2020): @@ -7421,7 +7421,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc pip install hypermax ```
-
Devol (🥉11 · ⭐ 940 · 💀) - Genetic neural architecture search with Keras. MIT +
Devol (🥉11 · ⭐ 940 · 💀) - 使用Keras进行遗传神经体系结构搜索。MIT - [GitHub](https://github.com/joeddav/devol) (👨‍💻 18 · 🔀 110 · 📋 27 - 25% open · ⏱️ 05.07.2020): @@ -7429,7 +7429,7 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc git clone https://github.com/joeddav/devol ```
-
Hypertunity (🥉10 · ⭐ 120 · 💀) - A toolset for black-box hyperparameter optimisation. Apache-2 +
Hypertunity (🥉10 · ⭐ 120 · 💀) - 黑盒超参数优化的工具集。Apache-2 - [GitHub](https://github.com/gdikov/hypertunity) (👨‍💻 2 · 🔀 9 · 📦 2 · ⏱️ 26.01.2020): @@ -7443,13 +7443,13 @@ _Libraries for hyperparameter optimization, automl and neural architecture searc

-## Reinforcement Learning +## 强化学习 -Back to top +Back to top -_Libraries for building and evaluating reinforcement learning & agent-based systems._ +_用于构建和评估强化学习和基于agent的系统的库。_ -
OpenAI Gym (🥇36 · ⭐ 28K) - A toolkit for developing and comparing reinforcement learning.. MIT +
OpenAI Gym (🥇36 · ⭐ 28K) - 开发和比较强化学习的工具包。MIT - [GitHub](https://github.com/openai/gym) (👨‍💻 380 · 🔀 7.5K · 📦 32K · 📋 1.6K - 0% open · ⏱️ 24.08.2022): @@ -7461,7 +7461,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install gym ```
-
TF-Agents (🥇27 · ⭐ 2.3K) - TF-Agents: A reliable, scalable and easy to use TensorFlow.. Apache-2 +
TF-Agents (🥇27 · ⭐ 2.3K) - TF-Agents:可靠,可扩展且易于使用的TensorFlow的强化学习库。Apache-2 - [GitHub](https://github.com/tensorflow/agents) (👨‍💻 120 · 🔀 620 · 📦 880 · 📋 560 - 22% open · ⏱️ 24.08.2022): @@ -7473,7 +7473,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install tf-agents ```
-
keras-rl (🥈25 · ⭐ 5.3K · 💀) - Deep Reinforcement Learning for Keras. MIT +
keras-rl (🥈25 · ⭐ 5.3K · 💀) - Keras的深度强化学习。MIT - [GitHub](https://github.com/keras-rl/keras-rl) (👨‍💻 40 · 🔀 1.3K · 📦 610 · 📋 230 - 2% open · ⏱️ 11.11.2019): @@ -7485,7 +7485,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install keras-rl ```
-
baselines (🥈24 · ⭐ 13K · 💀) - OpenAI Baselines: high-quality implementations of reinforcement.. MIT +
baselines (🥈24 · ⭐ 13K · 💀) - OpenAI基线:强化学习的高质量实现。MIT - [GitHub](https://github.com/openai/baselines) (👨‍💻 110 · 🔀 3.5K · 📦 410 · 📋 830 - 47% open · ⏱️ 31.01.2020): @@ -7497,7 +7497,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install baselines ```
-
Acme (🥈24 · ⭐ 2.7K) - A library of reinforcement learning components and agents. Apache-2 +
Acme (🥈24 · ⭐ 2.7K) - 强化学习组件和代理库。Apache-2 - [GitHub](https://github.com/deepmind/acme) (👨‍💻 75 · 🔀 340 · 📦 99 · 📋 210 - 14% open · ⏱️ 25.08.2022): @@ -7509,7 +7509,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install dm-acme ```
-
garage (🥈23 · ⭐ 1.5K) - A toolkit for reproducible reinforcement learning research. MIT +
garage (🥈23 · ⭐ 1.5K) - 用于可重复的强化学习研究的工具包。MIT - [GitHub](https://github.com/rlworkgroup/garage) (👨‍💻 78 · 🔀 260 · 📦 51 · 📋 1K - 19% open · ⏱️ 20.05.2022): @@ -7521,7 +7521,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install garage ```
-
ViZDoom (🥈23 · ⭐ 1.4K) - Doom-based AI Research Platform for Reinforcement Learning from.. ❗Unlicensed +
ViZDoom (🥈23 · ⭐ 1.4K) - 人工智能强化学习工具库。❗Unlicensed - [GitHub](https://github.com/mwydmuch/ViZDoom) (👨‍💻 49 · 🔀 330 · 📥 12K · 📦 150 · 📋 440 - 19% open · ⏱️ 26.06.2022): @@ -7533,7 +7533,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install vizdoom ```
-
Dopamine (🥈22 · ⭐ 9.9K) - Dopamine is a research framework for fast prototyping of.. Apache-2 +
Dopamine (🥈22 · ⭐ 9.9K) - Dopamine是一个用于快速对强化学习进行原型制作的研究框架。Apache-2 - [GitHub](https://github.com/google/dopamine) (👨‍💻 15 · 🔀 1.3K · 📋 150 - 43% open · ⏱️ 13.06.2022): @@ -7545,7 +7545,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install dopamine-rl ```
-
TensorForce (🥈22 · ⭐ 3.2K) - Tensorforce: a TensorFlow library for applied.. Apache-2 +
TensorForce (🥈22 · ⭐ 3.2K) - Tensorforce:一个基于TensorFlow的强化学习库。Apache-2 - [GitHub](https://github.com/tensorforce/tensorforce) (👨‍💻 82 · 🔀 510 · 📋 650 - 3% open · ⏱️ 10.02.2022): @@ -7557,7 +7557,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install tensorforce ```
-
ChainerRL (🥈22 · ⭐ 1.1K · 💀) - ChainerRL is a deep reinforcement learning library built on top of.. MIT +
ChainerRL (🥈22 · ⭐ 1.1K · 💀) - ChainerRL是建立在Chainer之上的深度强化学习库。MIT - [GitHub](https://github.com/chainer/chainerrl) (👨‍💻 29 · 🔀 220 · 📦 130 · 📋 200 - 25% open · ⏱️ 17.04.2021): @@ -7569,7 +7569,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install chainerrl ```
-
RLax (🥈22 · ⭐ 890) - A library of reinforcement learning building blocks in JAX. Apache-2 jax +
RLax (🥈22 · ⭐ 890) - 强化学习组件和代理库。Apache-2 jax - [GitHub](https://github.com/deepmind/rlax) (👨‍💻 19 · 🔀 66 · 📦 75 · 📋 19 - 21% open · ⏱️ 24.08.2022): @@ -7581,7 +7581,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install rlax ```
-
TensorLayer (🥉21 · ⭐ 7.1K) - Deep Learning and Reinforcement Learning Library for.. ❗Unlicensed +
TensorLayer (🥉21 · ⭐ 7.1K) - 深度学习和强化学习库。❗Unlicensed - [GitHub](https://github.com/tensorlayer/TensorLayer) (👨‍💻 130 · 🔀 1.6K · 📥 1.4K · 📋 460 - 4% open · ⏱️ 23.04.2022): @@ -7593,7 +7593,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install tensorlayer ```
-
Stable Baselines (🥉20 · ⭐ 3.6K · 💤) - A fork of OpenAI Baselines, implementations of.. MIT +
Stable Baselines (🥉20 · ⭐ 3.6K · 💤) - OpenAI Baselines的一个分支,强化学习的实现。MIT - [GitHub](https://github.com/hill-a/stable-baselines) (👨‍💻 110 · 🔀 690 · 📋 920 - 11% open · ⏱️ 25.08.2021): @@ -7605,7 +7605,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install stable-baselines ```
-
PARL (🥉20 · ⭐ 2.7K) - A high-performance distributed training framework for Reinforcement.. Apache-2 +
PARL (🥉20 · ⭐ 2.7K) - 强化学习高性能分布式训练框架。Apache-2 - [GitHub](https://github.com/PaddlePaddle/PARL) (👨‍💻 31 · 🔀 730 · 📦 94 · 📋 410 - 15% open · ⏱️ 25.08.2022): @@ -7617,7 +7617,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install parl ```
-
PFRL (🥉20 · ⭐ 890) - PFRL: a PyTorch-based deep reinforcement learning library. MIT +
PFRL (🥉20 · ⭐ 890) - PFRL:基于PyTorch的深度强化学习库。MIT - [GitHub](https://github.com/pfnet/pfrl) (👨‍💻 16 · 🔀 120 · 📦 54 · 📋 63 - 38% open · ⏱️ 14.03.2022): @@ -7629,7 +7629,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install pfrl ```
-
TRFL (🥉19 · ⭐ 3.1K · 💤) - TensorFlow Reinforcement Learning. Apache-2 +
TRFL (🥉19 · ⭐ 3.1K · 💤) - TensorFlow强化学习。Apache-2 - [GitHub](https://github.com/deepmind/trfl) (👨‍💻 13 · 🔀 380 · 📦 89 · 📋 20 - 20% open · ⏱️ 16.08.2021): @@ -7641,7 +7641,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install trfl ```
-
Coach (🥉18 · ⭐ 2.2K · 💀) - Reinforcement Learning Coach by Intel AI Lab enables easy.. Apache-2 +
Coach (🥉18 · ⭐ 2.2K · 💀) - 英特尔AI实验室的强化学习训练器。Apache-2 - [GitHub](https://github.com/IntelLabs/coach) (👨‍💻 35 · 🔀 430 · 📋 260 - 30% open · ⏱️ 28.06.2021): @@ -7653,7 +7653,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst pip install rl_coach ```
-
ReAgent (🥉17 · ⭐ 3.2K) - A platform for Reasoning systems (Reinforcement Learning,.. BSD-3 +
ReAgent (🥉17 · ⭐ 3.2K) - 推理系统平台。BSD-3 - [GitHub](https://github.com/facebookresearch/ReAgent) (👨‍💻 140 · 🔀 460 · 📋 100 - 25% open · ⏱️ 25.08.2022): @@ -7661,7 +7661,7 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst git clone https://github.com/facebookresearch/ReAgent ```
-
DeepMind Lab (🥉15 · ⭐ 6.7K) - A customisable 3D platform for agent-based AI research. ❗Unlicensed +
DeepMind Lab (🥉15 · ⭐ 6.7K) - 可定制的3D平台,用于agent-based AI研究。❗Unlicensed - [GitHub](https://github.com/deepmind/lab) (👨‍💻 8 · 🔀 1.3K · 📋 220 - 25% open · ⏱️ 09.06.2022): @@ -7671,13 +7671,13 @@ _Libraries for building and evaluating reinforcement learning & agent-based syst

-## Recommender Systems +## 推荐系统 -Back to top +Back to top -_Libraries for building and evaluating recommendation systems._ +_用于建立和评估推荐系统的库。_ -
lightfm (🥇26 · ⭐ 4.1K) - A Python implementation of LightFM, a hybrid recommendation algorithm. Apache-2 +
lightfm (🥇26 · ⭐ 4.1K) - 全局优化的Python实现。Apache-2 - [GitHub](https://github.com/lyst/lightfm) (👨‍💻 44 · 🔀 630 · 📦 790 · 📋 460 - 24% open · ⏱️ 19.07.2022): @@ -7693,7 +7693,7 @@ _Libraries for building and evaluating recommendation systems._ conda install -c conda-forge lightfm ```
-
implicit (🥇26 · ⭐ 2.9K) - Fast Python Collaborative Filtering for Implicit Feedback Datasets. MIT +
implicit (🥇26 · ⭐ 2.9K) - 隐式反馈数据集的快速Python协同过滤。MIT - [GitHub](https://github.com/benfred/implicit) (👨‍💻 32 · 🔀 530 · 📥 95 · 📦 650 · 📋 420 - 16% open · ⏱️ 21.08.2022): @@ -7709,7 +7709,7 @@ _Libraries for building and evaluating recommendation systems._ conda install -c conda-forge implicit ```
-
TF Recommenders (🥇26 · ⭐ 1.4K) - TensorFlow Recommenders is a library for building.. Apache-2 +
TF Recommenders (🥇26 · ⭐ 1.4K) - TensorFlow Recommenders是一个用于构建推荐系统的工具库。Apache-2 - [GitHub](https://github.com/tensorflow/recommenders) (👨‍💻 37 · 🔀 200 · 📦 140 · 📋 280 - 49% open · ⏱️ 23.08.2022): @@ -7721,7 +7721,7 @@ _Libraries for building and evaluating recommendation systems._ pip install tensorflow-recommenders ```
-
TF Ranking (🥈23 · ⭐ 2.5K) - Learning to Rank in TensorFlow. Apache-2 +
TF Ranking (🥈23 · ⭐ 2.5K) - 在TensorFlow中学习推荐排序。Apache-2 - [GitHub](https://github.com/tensorflow/ranking) (👨‍💻 28 · 🔀 430 · 📋 290 - 19% open · ⏱️ 26.04.2022): @@ -7733,7 +7733,7 @@ _Libraries for building and evaluating recommendation systems._ pip install tensorflow_ranking ```
-
Cornac (🥈23 · ⭐ 630) - A Comparative Framework for Multimodal Recommender Systems. Apache-2 +
Cornac (🥈23 · ⭐ 630) - 多模态推荐系统的比较框架。Apache-2 - [GitHub](https://github.com/PreferredAI/cornac) (👨‍💻 15 · 🔀 100 · 📦 120 · 📋 100 - 8% open · ⏱️ 22.07.2022): @@ -7749,7 +7749,7 @@ _Libraries for building and evaluating recommendation systems._ conda install -c conda-forge cornac ```
-
scikit-surprise (🥉22 · ⭐ 5.5K) - A Python scikit for building and analyzing recommender.. BSD-3 +
scikit-surprise (🥉22 · ⭐ 5.5K) - 用于构建和分析推荐算法的Python scikit工具库。BSD-3 - [GitHub](https://github.com/NicolasHug/Surprise) (👨‍💻 43 · 🔀 920 · 📋 350 - 15% open · ⏱️ 21.08.2022): @@ -7765,7 +7765,7 @@ _Libraries for building and evaluating recommendation systems._ conda install -c conda-forge scikit-surprise ```
-
RecBole (🥉22 · ⭐ 2K) - A unified, comprehensive and efficient recommendation library. MIT +
RecBole (🥉22 · ⭐ 2K) - 统一,全面,高效的推荐库。MIT - [GitHub](https://github.com/RUCAIBox/RecBole) (👨‍💻 47 · 🔀 380 · 📋 460 - 13% open · ⏱️ 26.08.2022): @@ -7781,7 +7781,7 @@ _Libraries for building and evaluating recommendation systems._ conda install -c aibox recbole ```
-
Recommenders (🥉21 · ⭐ 14K) - Best Practices on Recommendation Systems. MIT +
Recommenders (🥉21 · ⭐ 14K) - 推荐系统最佳实践。MIT - [GitHub](https://github.com/microsoft/recommenders) (👨‍💻 120 · 🔀 2.4K · 📥 230 · 📦 33 · 📋 710 - 20% open · ⏱️ 20.07.2022): @@ -7789,7 +7789,7 @@ _Libraries for building and evaluating recommendation systems._ git clone https://github.com/microsoft/recommenders ```
-
fastFM (🥉19 · ⭐ 1K · 💀) - fastFM: A Library for Factorization Machines. ❗Unlicensed +
fastFM (🥉19 · ⭐ 1K · 💀) - fastFM:用于分解机的工具库。❗Unlicensed - [GitHub](https://github.com/ibayer/fastFM) (👨‍💻 20 · 🔀 200 · 📥 450 · 📦 97 · 📋 110 - 43% open · ⏱️ 24.03.2021): @@ -7801,7 +7801,7 @@ _Libraries for building and evaluating recommendation systems._ pip install fastfm ```
-
recmetrics (🥉19 · ⭐ 420) - A library of metrics for evaluating recommender systems. MIT +
recmetrics (🥉19 · ⭐ 420) - 用于评估推荐系统的度量标准库。MIT - [GitHub](https://github.com/statisticianinstilettos/recmetrics) (👨‍💻 16 · 🔀 85 · 📦 29 · 📋 20 - 40% open · ⏱️ 17.04.2022): @@ -7813,7 +7813,7 @@ _Libraries for building and evaluating recommendation systems._ pip install recmetrics ```
-
Spotlight (🥉18 · ⭐ 2.8K · 💀) - Deep recommender models using PyTorch. MIT +
Spotlight (🥉18 · ⭐ 2.8K · 💀) - 使用PyTorch的深度推荐系统模型实现。MIT - [GitHub](https://github.com/maciejkula/spotlight) (👨‍💻 11 · 🔀 400 · 📋 110 - 56% open · ⏱️ 09.02.2020): @@ -7825,7 +7825,7 @@ _Libraries for building and evaluating recommendation systems._ conda install -c maciejkula spotlight ```
-
tensorrec (🥉18 · ⭐ 1.2K · 💀) - A TensorFlow recommendation algorithm and framework in.. Apache-2 +
tensorrec (🥉18 · ⭐ 1.2K · 💀) - TensorFlow推荐算法和框架。Apache-2 - [GitHub](https://github.com/jfkirk/tensorrec) (👨‍💻 9 · 🔀 220 · 📦 27 · 📋 130 - 28% open · ⏱️ 04.02.2020): @@ -7837,7 +7837,7 @@ _Libraries for building and evaluating recommendation systems._ pip install tensorrec ```
-
Case Recommender (🥉17 · ⭐ 420 · 💤) - Case Recommender: A Flexible and Extensible Python.. MIT +
Case Recommender (🥉17 · ⭐ 420 · 💤) - Case Recommender:灵活且可扩展的Python推荐系统工具库。MIT - [GitHub](https://github.com/caserec/CaseRecommender) (👨‍💻 11 · 🔀 79 · 📦 10 · 📋 25 - 20% open · ⏱️ 25.11.2021): @@ -7851,13 +7851,13 @@ _Libraries for building and evaluating recommendation systems._

-## Privacy Machine Learning +## 隐私机器学习 -Back to top +Back to top -_Libraries for encrypted and privacy-preserving machine learning using methods like federated learning & differential privacy._ +_使用联合学习和差异隐私之类的方法进行加密和保留隐私的机器学习的库。_ -
PySyft (🥇26 · ⭐ 8.3K) - A library for answering questions using data you cannot see. Apache-2 +
PySyft (🥇26 · ⭐ 8.3K) - 基于内部数据自动化回答问题的工具库。Apache-2 - [GitHub](https://github.com/OpenMined/PySyft) (👨‍💻 450 · 🔀 1.8K · 📋 3.1K - 1% open · ⏱️ 25.08.2022): @@ -7869,7 +7869,7 @@ _Libraries for encrypted and privacy-preserving machine learning using methods l pip install syft ```
-
Opacus (🥈24 · ⭐ 1.2K) - Training PyTorch models with differential privacy. Apache-2 +
Opacus (🥈24 · ⭐ 1.2K) - 使用不同的隐私训练PyTorch模型。Apache-2 - [GitHub](https://github.com/pytorch/opacus) (👨‍💻 55 · 🔀 220 · 📥 51 · 📦 130 · 📋 200 - 21% open · ⏱️ 25.08.2022): @@ -7881,7 +7881,7 @@ _Libraries for encrypted and privacy-preserving machine learning using methods l pip install opacus ```
-
TensorFlow Privacy (🥈23 · ⭐ 1.6K) - Library for training machine learning models with.. Apache-2 +
TensorFlow Privacy (🥈23 · ⭐ 1.6K) - 用于训练机器学习模型的库。Apache-2 - [GitHub](https://github.com/tensorflow/privacy) (👨‍💻 49 · 🔀 350 · 📥 80 · 📋 150 - 43% open · ⏱️ 22.08.2022): @@ -7893,7 +7893,7 @@ _Libraries for encrypted and privacy-preserving machine learning using methods l pip install tensorflow-privacy ```
-
FATE (🥉22 · ⭐ 4.4K) - An Industrial Grade Federated Learning Framework. Apache-2 +
FATE (🥉22 · ⭐ 4.4K) - 工业级联邦学习框架。Apache-2 - [GitHub](https://github.com/FederatedAI/FATE) (👨‍💻 74 · 🔀 1.3K · 📋 1.3K - 36% open · ⏱️ 15.04.2022): @@ -7901,7 +7901,7 @@ _Libraries for encrypted and privacy-preserving machine learning using methods l git clone https://github.com/FederatedAI/FATE ```
-
TFEncrypted (🥉20 · ⭐ 1K) - A Framework for Encrypted Machine Learning in TensorFlow. Apache-2 +
TFEncrypted (🥉20 · ⭐ 1K) - TensorFlow中的加密机器学习框架。Apache-2 - [GitHub](https://github.com/tf-encrypted/tf-encrypted) (👨‍💻 28 · 🔀 180 · 📦 62 · 📋 420 - 37% open · ⏱️ 26.08.2022): @@ -7913,7 +7913,7 @@ _Libraries for encrypted and privacy-preserving machine learning using methods l pip install tf-encrypted ```
-
CrypTen (🥉18 · ⭐ 1.1K) - A framework for Privacy Preserving Machine Learning. MIT +
CrypTen (🥉18 · ⭐ 1.1K) - 隐私保护的机器学习框架。MIT - [GitHub](https://github.com/facebookresearch/CrypTen) (👨‍💻 29 · 🔀 180 · 📦 21 · 📋 160 - 12% open · ⏱️ 10.06.2022): @@ -7927,13 +7927,13 @@ _Libraries for encrypted and privacy-preserving machine learning using methods l

-## Workflow & Experiment Tracking +## 工作流程和实验跟踪 -Back to top +Back to top -_Libraries to organize, track, and visualize machine learning experiments._ +_跟踪和可视化机器学习实验的工具库整理。_ -
Tensorboard (🥇37 · ⭐ 6K) - TensorFlow's Visualization Toolkit. Apache-2 +
Tensorboard (🥇37 · ⭐ 6K) - TensorFlow的可视化工具包。Apache-2 - [GitHub](https://github.com/tensorflow/tensorboard) (👨‍💻 290 · 🔀 1.5K · 📦 120K · 📋 1.7K - 31% open · ⏱️ 25.08.2022): @@ -7949,7 +7949,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ conda install -c conda-forge tensorboard ```
-
SageMaker SDK (🥇33 · ⭐ 1.7K) - A library for training and deploying machine learning.. Apache-2 +
SageMaker SDK (🥇33 · ⭐ 1.7K) - 一个用于训练和部署机器学习的库。Apache-2 - [GitHub](https://github.com/aws/sagemaker-python-sdk) (👨‍💻 280 · 🔀 810 · 📦 1.6K · 📋 1.1K - 32% open · ⏱️ 24.08.2022): @@ -7961,7 +7961,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install sagemaker ```
-
PyCaret (🥇32 · ⭐ 6.1K) - An open-source, low-code machine learning library in Python. MIT +
PyCaret (🥇32 · ⭐ 6.1K) - Python中的开源代码,低代码机器学习库。MIT - [GitHub](https://github.com/pycaret/pycaret) (👨‍💻 99 · 🔀 1.4K · 📥 610 · 📦 2.4K · 📋 1.7K - 15% open · ⏱️ 13.08.2022): @@ -7973,7 +7973,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install pycaret ```
-
wandb client (🥇32 · ⭐ 4.6K) - A tool for visualizing and tracking your machine learning.. MIT +
wandb client (🥇32 · ⭐ 4.6K) - 用于可视化和跟踪机器学习的工具。MIT - [GitHub](https://github.com/wandb/wandb) (👨‍💻 120 · 🔀 340 · 📦 11K · 📋 1.9K - 24% open · ⏱️ 26.08.2022): @@ -7985,7 +7985,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install wandb ```
-
tensorboardX (🥈31 · ⭐ 7.4K) - tensorboard for pytorch (and chainer, mxnet, numpy, ...). MIT +
tensorboardX (🥈31 · ⭐ 7.4K) - pytorch(和链接器,mxnet,numpy,...)的张量板。MIT - [GitHub](https://github.com/lanpa/tensorboardX) (👨‍💻 72 · 🔀 850 · 📥 350 · 📦 21K · 📋 430 - 15% open · ⏱️ 08.06.2022): @@ -8001,7 +8001,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ conda install -c conda-forge tensorboardx ```
-
mlflow (🥈30 · ⭐ 12K) - Open source platform for the machine learning lifecycle. Apache-2 +
mlflow (🥈30 · ⭐ 12K) - 机器学习生命周期的开源平台。Apache-2 - [GitHub](https://github.com/mlflow/mlflow) (👨‍💻 470 · 🔀 2.8K · 📋 2.4K - 33% open · ⏱️ 26.08.2022): @@ -8017,7 +8017,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ conda install -c conda-forge mlflow ```
-
sacred (🥈30 · ⭐ 3.9K) - Sacred is a tool to help you configure, organize, log and reproduce.. MIT +
sacred (🥈30 · ⭐ 3.9K) - Sacred是可帮助您配置,组织,记录和复现的工具。MIT - [GitHub](https://github.com/IDSIA/sacred) (👨‍💻 100 · 🔀 350 · 📦 1.5K · 📋 540 - 16% open · ⏱️ 15.08.2022): @@ -8029,7 +8029,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install sacred ```
-
ClearML (🥈29 · ⭐ 3.5K) - ClearML - Auto-Magical Suite of tools to streamline your ML.. Apache-2 +
ClearML (🥈29 · ⭐ 3.5K) - ClearML-自动精简工具套件。Apache-2 - [GitHub](https://github.com/allegroai/clearml) (👨‍💻 52 · 🔀 460 · 📥 500 · 📦 290 · 📋 600 - 44% open · ⏱️ 23.08.2022): @@ -8045,7 +8045,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ docker pull allegroai/trains ```
-
Metaflow (🥈28 · ⭐ 5.9K) - Build and manage real-life data science projects with ease. Apache-2 +
Metaflow (🥈28 · ⭐ 5.9K) - 轻松构建和管理现实生活中的数据科学项目。Apache-2 - [GitHub](https://github.com/Netflix/metaflow) (👨‍💻 54 · 🔀 500 · 📦 310 · 📋 420 - 45% open · ⏱️ 24.08.2022): @@ -8061,7 +8061,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ conda install -c conda-forge metaflow ```
-
VisualDL (🥈27 · ⭐ 4.4K) - Deep Learning Visualization Toolkit. Apache-2 +
VisualDL (🥈27 · ⭐ 4.4K) - 深度学习可视化工具包。Apache-2 - [GitHub](https://github.com/PaddlePaddle/VisualDL) (👨‍💻 32 · 🔀 590 · 📥 210 · 📦 1.3K · 📋 420 - 20% open · ⏱️ 23.08.2022): @@ -8073,7 +8073,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install visualdl ```
-
Catalyst (🥈27 · ⭐ 3K) - Accelerated deep learning R&D. Apache-2 +
Catalyst (🥈27 · ⭐ 3K) - 加快深度学习研发。Apache-2 - [GitHub](https://github.com/catalyst-team/catalyst) (👨‍💻 100 · 🔀 340 · 📦 600 · 📋 340 - 1% open · ⏱️ 29.04.2022): @@ -8085,7 +8085,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install catalyst ```
-
snakemake (🥈27 · ⭐ 1.5K) - This is the development home of the workflow management system.. MIT +
snakemake (🥈27 · ⭐ 1.5K) - 工作流管理系统snakemake。MIT - [GitHub](https://github.com/snakemake/snakemake) (👨‍💻 260 · 🔀 360 · 📦 1.2K · 📋 1.1K - 59% open · ⏱️ 25.08.2022): @@ -8101,7 +8101,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ conda install -c bioconda snakemake ```
-
ml-metadata (🥈26 · ⭐ 490) - For recording and retrieving metadata associated with ML.. Apache-2 +
ml-metadata (🥈26 · ⭐ 490) - 用于记录和检索与ML相关的元数据。Apache-2 - [GitHub](https://github.com/google/ml-metadata) (👨‍💻 15 · 🔀 95 · 📥 1.7K · 📦 240 · 📋 91 - 26% open · ⏱️ 23.08.2022): @@ -8113,7 +8113,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install ml-metadata ```
-
DVC (🥈25 · ⭐ 10K) - Data Version Control | Git for Data & Models. Apache-2 +
DVC (🥈25 · ⭐ 10K) - 数据版本控制|针对数据和模型的Git。|) - 数据版本控制|针对数据和模型的Git。Apache-2 - [GitHub](https://github.com/iterative/dvc) (👨‍💻 270 · 🔀 950 · 📥 120K · 📋 3.8K - 16% open · ⏱️ 25.08.2022): @@ -8129,7 +8129,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ conda install -c conda-forge dvc ```
-
AzureML SDK (🥈25 · ⭐ 3.4K) - Python notebooks with ML and deep learning examples with Azure.. MIT +
AzureML SDK (🥈25 · ⭐ 3.4K) - 带有ML的Python笔记本和带有Azure的深度学习示例。MIT - [GitHub](https://github.com/Azure/MachineLearningNotebooks) (👨‍💻 60 · 🔀 2.1K · 📥 460 · 📋 1.3K - 21% open · ⏱️ 19.08.2022): @@ -8141,7 +8141,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install azureml-sdk ```
-
aim (🥉24 · ⭐ 2.7K) - Aim a super-easy way to record, search and compare 1000s of ML training.. Apache-2 +
aim (🥉24 · ⭐ 2.7K) - 以一种非常简单的方式来记录,搜索和比较数千次ML训练。Apache-2 - [GitHub](https://github.com/aimhubio/aim) (👨‍💻 42 · 🔀 160 · 📦 100 · 📋 630 - 21% open · ⏱️ 25.08.2022): @@ -8153,7 +8153,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install aim ```
-
livelossplot (🥉23 · ⭐ 1.2K) - Live training loss plot in Jupyter Notebook for Keras,.. MIT +
livelossplot (🥉23 · ⭐ 1.2K) - Jupyter Notebook for Keras的实时训练loss图。MIT - [GitHub](https://github.com/stared/livelossplot) (👨‍💻 17 · 🔀 140 · 📦 840 · 📋 75 - 6% open · ⏱️ 04.04.2022): @@ -8165,7 +8165,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install livelossplot ```
-
Labml (🥉23 · ⭐ 1.2K) - Monitor deep learning model training and hardware usage from your mobile.. MIT +
Labml (🥉23 · ⭐ 1.2K) - 从您的手机监控深度学习模型训练和硬件使用情况。MIT - [GitHub](https://github.com/labmlai/labml) (👨‍💻 7 · 🔀 78 · 📦 54 · 📋 29 - 44% open · ⏱️ 15.08.2022): @@ -8177,7 +8177,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install labml ```
-
knockknock (🥉22 · ⭐ 2.5K · 💀) - Knock Knock: Get notified when your training ends with only two.. MIT +
knockknock (🥉22 · ⭐ 2.5K · 💀) - 当您的训练结束后通知您。MIT - [GitHub](https://github.com/huggingface/knockknock) (👨‍💻 18 · 🔀 210 · 📦 380 · 📋 39 - 41% open · ⏱️ 16.03.2020): @@ -8193,7 +8193,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ conda install -c conda-forge knockknock ```
-
kaggle (🥉21 · ⭐ 4.9K · 💀) - Official Kaggle API. Apache-2 +
kaggle (🥉21 · ⭐ 4.9K · 💀) - 官方Kaggle API。Apache-2 - [GitHub](https://github.com/Kaggle/kaggle-api) (👨‍💻 36 · 🔀 940 · 📋 350 - 57% open · ⏱️ 15.03.2021): @@ -8209,7 +8209,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ conda install -c conda-forge kaggle ```
-
Guild AI (🥉21 · ⭐ 730) - Experiment tracking, ML developer tools. Apache-2 +
Guild AI (🥉21 · ⭐ 730) - 实验跟踪,ML开发人员工具库。Apache-2 - [GitHub](https://github.com/guildai/guildai) (👨‍💻 21 · 🔀 66 · 📥 6 · 📦 58 · 📋 380 - 45% open · ⏱️ 24.08.2022): @@ -8221,7 +8221,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install guildai ```
-
hiddenlayer (🥉20 · ⭐ 1.6K · 💀) - Neural network graphs and training metrics for.. MIT +
hiddenlayer (🥉20 · ⭐ 1.6K · 💀) - 神经网络图和训练指标。MIT - [GitHub](https://github.com/waleedka/hiddenlayer) (👨‍💻 6 · 🔀 230 · 📦 130 · 📋 85 - 58% open · ⏱️ 24.04.2020): @@ -8233,7 +8233,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install hiddenlayer ```
-
TNT (🥉20 · ⭐ 1.4K) - Simple tools for logging and visualizing, loading and training. BSD-3 +
TNT (🥉20 · ⭐ 1.4K) - 用于记录和可视化,加载和训练的简单工具。BSD-3 - [GitHub](https://github.com/pytorch/tnt) (👨‍💻 53 · 🔀 200 · ⏱️ 18.08.2022): @@ -8245,7 +8245,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install torchnet ```
-
TensorWatch (🥉19 · ⭐ 3.2K · 💀) - Debugging, monitoring and visualization for Python Machine.. MIT +
TensorWatch (🥉19 · ⭐ 3.2K · 💀) - Python机器学习的调试,监视和可视化。MIT - [GitHub](https://github.com/microsoft/tensorwatch) (👨‍💻 13 · 🔀 340 · 📦 86 · 📋 67 - 77% open · ⏱️ 15.01.2021): @@ -8257,7 +8257,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install tensorwatch ```
-
lore (🥉19 · ⭐ 1.5K) - Lore makes machine learning approachable for Software Engineers and.. MIT +
lore (🥉19 · ⭐ 1.5K) - lore使机器学习对软件工程师更易上手,对机器学习研究人员更可维护。MIT - [GitHub](https://github.com/instacart/lore) (👨‍💻 26 · 🔀 120 · 📦 20 · 📋 35 - 45% open · ⏱️ 11.04.2022): @@ -8269,7 +8269,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install lore ```
-
gokart (🥉19 · ⭐ 260) - A wrapper of the data pipeline library luigi. MIT +
gokart (🥉19 · ⭐ 260) - 数据管道库luigi的包装。MIT - [GitHub](https://github.com/m3dev/gokart) (👨‍💻 34 · 🔀 45 · 📋 73 - 19% open · ⏱️ 02.08.2022): @@ -8281,7 +8281,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install gokart ```
-
Studio.ml (🥉18 · ⭐ 380 · 💤) - Studio: Simplify and expedite model building process. Apache-2 +
Studio.ml (🥉18 · ⭐ 380 · 💤) - Studio:简化和加快模型构建过程。Apache-2 - [GitHub](https://github.com/studioml/studio) (👨‍💻 21 · 🔀 51 · 📦 5 · 📋 250 - 22% open · ⏱️ 14.09.2021): @@ -8293,7 +8293,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install studioml ```
-
MXBoard (🥉18 · ⭐ 330 · 💀) - Logging MXNet data for visualization in TensorBoard. Apache-2 +
MXBoard (🥉18 · ⭐ 330 · 💀) - MXNet日志记录器,以在TensorBoard中进行可视化。Apache-2 - [GitHub](https://github.com/awslabs/mxboard) (👨‍💻 9 · 🔀 46 · 📦 160 · 📋 31 - 51% open · ⏱️ 24.01.2020): @@ -8305,7 +8305,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install mxboard ```
-
quinn (🥉17 · ⭐ 350 · 💀) - pyspark methods to enhance developer productivity. ❗Unlicensed +
quinn (🥉17 · ⭐ 350 · 💀) - pyspark方法可提高开发人员的工作效率。❗Unlicensed - [GitHub](https://github.com/MrPowers/quinn) (👨‍💻 6 · 🔀 47 · 📋 24 - 58% open · ⏱️ 09.02.2021): @@ -8317,7 +8317,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install quinn ```
-
TensorBoard Logger (🥉15 · ⭐ 620 · 💀) - Log TensorBoard events without touching TensorFlow. MIT +
TensorBoard Logger (🥉15 · ⭐ 620 · 💀) - 简易TensorBoard日志记录库。MIT - [GitHub](https://github.com/TeamHG-Memex/tensorboard_logger) (👨‍💻 5 · 🔀 49 · 📋 24 - 37% open · ⏱️ 21.10.2019): @@ -8329,7 +8329,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install tensorboard_logger ```
-
datmo (🥉15 · ⭐ 340 · 💀) - Open source production model management tool for data scientists. MIT +
datmo (🥉15 · ⭐ 340 · 💀) - 面向数据科学家的开源生产模型管理工具。MIT - [GitHub](https://github.com/datmo/datmo) (👨‍💻 6 · 🔀 28 · 📦 5 · 📋 180 - 15% open · ⏱️ 29.11.2019): @@ -8341,7 +8341,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install datmo ```
-
steppy (🥉15 · ⭐ 130 · 💀) - Lightweight, Python library for fast and reproducible experimentation. MIT +
steppy (🥉15 · ⭐ 130 · 💀) - 轻量级的Python库,可进行快速且可重复的实验。MIT - [GitHub](https://github.com/minerva-ml/steppy) (👨‍💻 5 · 🔀 33 · 📦 46 · 📋 63 - 20% open · ⏱️ 23.11.2018): @@ -8353,7 +8353,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install steppy ```
-
SKLL (🥉14 · ⭐ 530 · 💤) - SciKit-Learn Laboratory (SKLL) makes it easy to run machine.. ❗Unlicensed +
SKLL (🥉14 · ⭐ 530 · 💤) - SciKit学习实验室(SKLL)使机器学习易于操作。❗Unlicensed - [GitHub](https://github.com/EducationalTestingService/skll) (👨‍💻 37 · 🔀 65 · 📥 11 · 📦 38 · 📋 400 - 7% open · ⏱️ 21.12.2021): @@ -8365,7 +8365,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ pip install skll ```
-
ModelChimp (🥉14 · ⭐ 120 · 💤) - Experiment tracking for machine and deep learning projects. BSD-2 +
ModelChimp (🥉14 · ⭐ 120 · 💤) - 机器和深度学习项目的实验跟踪。BSD-2 - [GitHub](https://github.com/ModelChimp/modelchimp) (👨‍💻 3 · 🔀 12 · 📋 14 - 28% open · ⏱️ 01.08.2021): @@ -8381,7 +8381,7 @@ _Libraries to organize, track, and visualize machine learning experiments._ docker pull modelchimp/modelchimp-server ```
-
traintool (🥉7 · ⭐ 10 · 💀) - Train off-the-shelf machine learning models in one.. Apache-2 +
traintool (🥉7 · ⭐ 10 · 💀) - 一站式训练现成的机器学习模型。Apache-2 - [GitHub](https://github.com/jrieke/traintool) (⏱️ 12.03.2021): @@ -8395,13 +8395,13 @@ _Libraries to organize, track, and visualize machine learning experiments._

-## Model Serialization & Conversion +## 模型序列化和转换 -Back to top +Back to top -_Libraries to serialize models to files, convert between a variety of model formats, and optimize models for deployment._ +_用于将模型序列化为文件,在各种模型格式之间进行转换以及优化模型以进行部署的库。_ -
onnx (🥇32 · ⭐ 13K) - Open standard for machine learning interoperability. Apache-2 +
onnx (🥇32 · ⭐ 13K) - 机器学习互操作性的开放标准。Apache-2 - [GitHub](https://github.com/onnx/onnx) (👨‍💻 250 · 🔀 2.9K · 📥 18K · 📦 8.1K · 📋 2K - 11% open · ⏱️ 25.08.2022): @@ -8417,7 +8417,7 @@ _Libraries to serialize models to files, convert between a variety of model form conda install -c conda-forge onnx ```
-
Core ML Tools (🥇25 · ⭐ 2.8K) - Core ML tools contain supporting tools for Core ML model.. BSD-3 +
Core ML Tools (🥇25 · ⭐ 2.8K) - 核心ML工具包含用于核心ML模型的支持工具。BSD-3 - [GitHub](https://github.com/apple/coremltools) (👨‍💻 130 · 🔀 420 · 📥 4.4K · 📦 1K · 📋 970 - 28% open · ⏱️ 24.08.2022): @@ -8429,7 +8429,7 @@ _Libraries to serialize models to files, convert between a variety of model form pip install coremltools ```
-
m2cgen (🥇25 · ⭐ 2.2K) - Transform ML models into a native code (Java, C, Python, Go, JavaScript,.. MIT +
m2cgen (🥇25 · ⭐ 2.2K) - 将ML模型转换成本机代码(Java,C,Python,Go,JavaScript)等。MIT - [GitHub](https://github.com/BayesWitnesses/m2cgen) (👨‍💻 13 · 🔀 200 · 📥 32 · 📦 59 · 📋 92 - 26% open · ⏱️ 14.08.2022): @@ -8441,7 +8441,7 @@ _Libraries to serialize models to files, convert between a variety of model form pip install m2cgen ```
-
TorchServe (🥈24 · ⭐ 2.8K) - Model Serving on PyTorch. Apache-2 +
TorchServe (🥈24 · ⭐ 2.8K) - 在PyTorch上进行模型服务。Apache-2 - [GitHub](https://github.com/pytorch/serve) (👨‍💻 120 · 🔀 570 · 📥 2K · 📋 970 - 14% open · ⏱️ 25.08.2022): @@ -8461,7 +8461,7 @@ _Libraries to serialize models to files, convert between a variety of model form docker pull pytorch/torchserve ```
-
mmdnn (🥈23 · ⭐ 5.6K · 💀) - MMdnn is a set of tools to help users inter-operate among different deep.. MIT +
mmdnn (🥈23 · ⭐ 5.6K · 💀) - MMdnn是一组工具,可以帮助用户在不同的深度学习框架之间进行互操作。MIT - [GitHub](https://github.com/microsoft/MMdnn) (👨‍💻 85 · 🔀 950 · 📥 3.6K · 📦 85 · 📋 610 - 52% open · ⏱️ 14.08.2020): @@ -8473,7 +8473,7 @@ _Libraries to serialize models to files, convert between a variety of model form pip install mmdnn ```
-
cortex (🥉22 · ⭐ 7.8K) - Cost-effective serverless computing at scale. Apache-2 +
cortex (🥉22 · ⭐ 7.8K) - 具有成本效益的无服务器大规模计算。Apache-2 - [GitHub](https://github.com/cortexlabs/cortex) (👨‍💻 24 · 🔀 580 · 📋 1.1K - 10% open · ⏱️ 23.04.2022): @@ -8485,7 +8485,7 @@ _Libraries to serialize models to files, convert between a variety of model form pip install cortex ```
-
Hummingbird (🥉22 · ⭐ 3K) - Hummingbird compiles trained ML models into tensor computation for.. MIT +
Hummingbird (🥉22 · ⭐ 3K) - 蜂鸟将训练有素的机器学习模型编译为张量计算,以用于..MIT - [GitHub](https://github.com/microsoft/hummingbird) (👨‍💻 31 · 🔀 240 · 📥 180 · 📦 39 · 📋 250 - 16% open · ⏱️ 17.08.2022): @@ -8497,7 +8497,7 @@ _Libraries to serialize models to files, convert between a variety of model form pip install hummingbird-ml ```
-
sklearn-porter (🥉20 · ⭐ 1.2K) - Transpile trained scikit-learn estimators to C, Java,.. BSD-3 +
sklearn-porter (🥉20 · ⭐ 1.2K) - 将经过训练的scikit-learn估计器转换为C,Java等。BSD-3 - [GitHub](https://github.com/nok/sklearn-porter) (👨‍💻 12 · 🔀 160 · 📦 44 · 📋 68 - 50% open · ⏱️ 22.05.2022): @@ -8509,7 +8509,7 @@ _Libraries to serialize models to files, convert between a variety of model form pip install sklearn-porter ```
-
pytorch2keras (🥉18 · ⭐ 810 · 💤) - PyTorch to Keras model convertor. MIT +
pytorch2keras (🥉18 · ⭐ 810 · 💤) - PyTorch到Keras模型转换器。MIT - [GitHub](https://github.com/gmalivenko/pytorch2keras) (👨‍💻 13 · 🔀 140 · 📦 51 · 📋 120 - 44% open · ⏱️ 06.08.2021): @@ -8521,7 +8521,7 @@ _Libraries to serialize models to files, convert between a variety of model form pip install pytorch2keras ```
-
Larq Compute Engine (🥉17 · ⭐ 210) - Highly optimized inference engine for Binarized.. Apache-2 +
Larq Compute Engine (🥉17 · ⭐ 210) - 高度优化的二值化推理引擎。Apache-2 - [GitHub](https://github.com/larq/compute-engine) (👨‍💻 18 · 🔀 32 · 📥 730 · 📦 6 · 📋 140 - 9% open · ⏱️ 25.08.2022): @@ -8533,7 +8533,7 @@ _Libraries to serialize models to files, convert between a variety of model form pip install larq-compute-engine ```
-
tfdeploy (🥉14 · ⭐ 350 · 💀) - Deploy tensorflow graphs for fast evaluation and export to.. BSD-3 +
tfdeploy (🥉14 · ⭐ 350 · 💀) - 部署张量流图以进行快速评估并导出到无tensorflow环境中基于numpy运行。BSD-3 - [GitHub](https://github.com/riga/tfdeploy) (👨‍💻 4 · 🔀 36 · 📋 34 - 32% open · ⏱️ 08.01.2021): @@ -8547,13 +8547,13 @@ _Libraries to serialize models to files, convert between a variety of model form

-## Model Interpretability +## 模型的可解释性 -Back to top +Back to top -_Libraries to visualize, explain, debug, evaluate, and interpret machine learning models._ +_用于可视化,解释,调试,评估和解释机器学习模型的库。_ -
shap (🥇36 · ⭐ 17K) - A game theoretic approach to explain the output of any machine learning model. MIT +
shap (🥇36 · ⭐ 17K) - 用于解释任何机器学习模型的输出的一种博弈论方法实现。MIT - [GitHub](https://github.com/slundberg/shap) (👨‍💻 200 · 🔀 2.6K · 📦 6.4K · 📋 2K - 69% open · ⏱️ 16.06.2022): @@ -8569,7 +8569,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin conda install -c conda-forge shap ```
-
Lime (🥇30 · ⭐ 10K · 💀) - Lime: Explaining the predictions of any machine learning classifier. BSD-2 +
Lime (🥇30 · ⭐ 10K · 💀) - Lime:解释任何机器学习分类器的预测。BSD-2 - [GitHub](https://github.com/marcotcr/lime) (👨‍💻 61 · 🔀 1.6K · 📦 2.6K · 📋 580 - 9% open · ⏱️ 29.07.2021): @@ -8585,7 +8585,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin conda install -c conda-forge lime ```
-
pyLDAvis (🥇29 · ⭐ 1.6K · 💀) - Python library for interactive topic model visualization... BSD-3 +
pyLDAvis (🥇29 · ⭐ 1.6K · 💀) - 用于交互式主题模型可视化的Python库。BSD-3 - [GitHub](https://github.com/bmabey/pyLDAvis) (👨‍💻 32 · 🔀 330 · 📦 3.8K · 📋 160 - 51% open · ⏱️ 24.03.2021): @@ -8601,7 +8601,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin conda install -c conda-forge pyldavis ```
-
InterpretML (🥇28 · ⭐ 4.9K) - Fit interpretable models. Explain blackbox machine learning. MIT +
InterpretML (🥇28 · ⭐ 4.9K) - 拟合可解释的模型。对机器学习黑匣子进行解释。MIT - [GitHub](https://github.com/interpretml/interpret) (👨‍💻 31 · 🔀 590 · 📦 260 · 📋 300 - 32% open · ⏱️ 26.08.2022): @@ -8613,7 +8613,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install interpret ```
-
dtreeviz (🥇28 · ⭐ 2.2K) - A python library for decision tree visualization and model interpretation. MIT +
dtreeviz (🥇28 · ⭐ 2.2K) - 用于决策树可视化和模型解释的python库。MIT - [GitHub](https://github.com/parrt/dtreeviz) (👨‍💻 21 · 🔀 280 · 📦 450 · 📋 120 - 19% open · ⏱️ 23.08.2022): @@ -8625,7 +8625,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install dtreeviz ```
-
arviz (🥇28 · ⭐ 1.3K) - Exploratory analysis of Bayesian models with Python. Apache-2 +
arviz (🥇28 · ⭐ 1.3K) - 使用Python探索性分析贝叶斯模型。Apache-2 - [GitHub](https://github.com/arviz-devs/arviz) (👨‍💻 130 · 🔀 290 · 📥 110 · 📦 2.7K · 📋 760 - 20% open · ⏱️ 17.08.2022): @@ -8641,7 +8641,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin conda install -c conda-forge arviz ```
-
Captum (🥈27 · ⭐ 3.4K) - Model interpretability and understanding for PyTorch. BSD-3 +
Captum (🥈27 · ⭐ 3.4K) - PyTorch的模型可解释性和理解。BSD-3 - [GitHub](https://github.com/pytorch/captum) (👨‍💻 88 · 🔀 350 · 📦 650 · 📋 380 - 24% open · ⏱️ 23.08.2022): @@ -8653,7 +8653,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install captum ```
-
scikit-plot (🥈26 · ⭐ 2.2K · 💀) - An intuitive library to add plotting functionality to.. MIT +
scikit-plot (🥈26 · ⭐ 2.2K · 💀) - 一个直观的库,可向其中添加绘图功能。MIT - [GitHub](https://github.com/reiinakano/scikit-plot) (👨‍💻 13 · 🔀 260 · 📦 2.3K · 📋 58 - 32% open · ⏱️ 19.08.2018): @@ -8669,7 +8669,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin conda install -c conda-forge scikit-plot ```
-
explainerdashboard (🥈26 · ⭐ 1.3K) - Quickly build Explainable AI dashboards that show the inner.. MIT +
explainerdashboard (🥈26 · ⭐ 1.3K) - 快速构建可显示内部信息的可解释AI仪表板。MIT - [GitHub](https://github.com/oegedijk/explainerdashboard) (👨‍💻 15 · 🔀 160 · 📦 160 · 📋 180 - 8% open · ⏱️ 16.06.2022): @@ -8681,7 +8681,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install explainerdashboard ```
-
Model Analysis (🥈26 · ⭐ 1.2K) - Model analysis tools for TensorFlow. Apache-2 +
Model Analysis (🥈26 · ⭐ 1.2K) - TensorFlow的模型分析工具。Apache-2 - [GitHub](https://github.com/tensorflow/model-analysis) (👨‍💻 47 · 🔀 240 · 📋 65 - 24% open · ⏱️ 25.08.2022): @@ -8693,7 +8693,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install tensorflow-model-analysis ```
-
Alibi (🥈25 · ⭐ 1.7K) - Algorithms for monitoring and explaining machine learning models. Apache-2 +
Alibi (🥈25 · ⭐ 1.7K) - 监视和解释机器学习模型的算法。Apache-2 - [GitHub](https://github.com/SeldonIO/alibi) (👨‍💻 18 · 🔀 190 · 📦 190 · 📋 300 - 36% open · ⏱️ 24.08.2022): @@ -8705,7 +8705,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install alibi ```
-
Lucid (🥈24 · ⭐ 4.4K · 💀) - A collection of infrastructure and tools for research in.. Apache-2 +
Lucid (🥈24 · ⭐ 4.4K · 💀) - 用于神经科学研究的基础设施和工具的集合。Apache-2 - [GitHub](https://github.com/tensorflow/lucid) (👨‍💻 40 · 🔀 600 · 📦 650 · 📋 170 - 42% open · ⏱️ 19.03.2021): @@ -8717,7 +8717,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install lucid ```
-
Fairness 360 (🥈24 · ⭐ 1.8K) - A comprehensive set of fairness metrics for datasets and.. Apache-2 +
Fairness 360 (🥈24 · ⭐ 1.8K) - 一整套用于数据集的公平度量标准。Apache-2 - [GitHub](https://github.com/Trusted-AI/AIF360) (👨‍💻 52 · 🔀 580 · 📦 170 · 📋 140 - 54% open · ⏱️ 25.08.2022): @@ -8729,7 +8729,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install aif360 ```
-
CausalNex (🥈24 · ⭐ 1.6K) - A Python library that helps data scientists to infer.. Apache-2 +
CausalNex (🥈24 · ⭐ 1.6K) - 一个可帮助数据科学家进行因果推断的Python库。Apache-2 - [GitHub](https://github.com/quantumblacklabs/causalnex) (👨‍💻 22 · 🔀 180 · 📦 53 · 📋 110 - 17% open · ⏱️ 06.07.2022): @@ -8741,7 +8741,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install causalnex ```
-
Explainability 360 (🥈24 · ⭐ 1.1K) - Interpretability and explainability of data and.. Apache-2 +
Explainability 360 (🥈24 · ⭐ 1.1K) - 数据和机器学习的可解释性。Apache-2 - [GitHub](https://github.com/Trusted-AI/AIX360) (👨‍💻 31 · 🔀 240 · 📦 55 · 📋 65 - 56% open · ⏱️ 26.07.2022): @@ -8753,7 +8753,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install aix360 ```
-
keras-vis (🥈23 · ⭐ 2.9K · 💀) - Neural network visualization toolkit for keras. MIT +
keras-vis (🥈23 · ⭐ 2.9K · 💀) - 用于Keras的神经网络可视化工具包。MIT - [GitHub](https://github.com/raghakot/keras-vis) (👨‍💻 10 · 🔀 630 · 📦 2.1K · 📋 210 - 52% open · ⏱️ 20.04.2020): @@ -8765,7 +8765,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install keras-vis ```
-
yellowbrick (🥈22 · ⭐ 3.7K) - Visual analysis and diagnostic tools to facilitate machine.. Apache-2 +
yellowbrick (🥈22 · ⭐ 3.7K) - 可视化分析和诊断工具,方便机器使用。Apache-2 - [GitHub](https://github.com/DistrictDataLabs/yellowbrick) (👨‍💻 110 · 🔀 510 · 📋 670 - 11% open · ⏱️ 21.08.2022): @@ -8777,7 +8777,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install yellowbrick ```
-
eli5 (🥈22 · ⭐ 2.6K · 💀) - A library for debugging/inspecting machine learning classifiers and.. MIT +
eli5 (🥈22 · ⭐ 2.6K · 💀) - 一个用于调试/检查机器学习分类器的库。MIT - [GitHub](https://github.com/TeamHG-Memex/eli5) (👨‍💻 14 · 🔀 310 · 📋 250 - 55% open · ⏱️ 22.01.2020): @@ -8793,7 +8793,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin conda install -c conda-forge eli5 ```
-
imodels (🥈22 · ⭐ 890) - Interpretable ML package for concise, transparent, and accurate predictive.. MIT +
imodels (🥈22 · ⭐ 890) - 可解释的ML包,用于简洁,透明和准确的预测。MIT - [GitHub](https://github.com/csinva/imodels) (👨‍💻 13 · 🔀 83 · 📦 20 · 📋 40 - 35% open · ⏱️ 25.08.2022): @@ -8805,7 +8805,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install imodels ```
-
DoWhy (🥉21 · ⭐ 5.1K) - DoWhy is a Python library for causal inference that supports explicit.. MIT +
DoWhy (🥉21 · ⭐ 5.1K) - DoWhy是用于因果推断的Python库。MIT - [GitHub](https://github.com/py-why/dowhy) (👨‍💻 60 · 🔀 700 · 📥 31 · 📋 250 - 31% open · ⏱️ 23.08.2022): @@ -8821,7 +8821,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin conda install -c conda-forge dowhy ```
-
checklist (🥉21 · ⭐ 1.7K) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList. MIT +
checklist (🥉21 · ⭐ 1.7K) - 超越准确性:使用CheckList对NLP模型进行行为测试。MIT - [GitHub](https://github.com/marcotcr/checklist) (👨‍💻 13 · 🔀 170 · 📦 150 · 📋 83 - 2% open · ⏱️ 12.08.2022): @@ -8833,7 +8833,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install checklist ```
-
fairlearn (🥉21 · ⭐ 1.4K) - A Python package to assess and improve fairness of machine.. MIT +
fairlearn (🥉21 · ⭐ 1.4K) - 一个用于评估和改善机器公平性的Python程序包。MIT - [GitHub](https://github.com/fairlearn/fairlearn) (👨‍💻 68 · 🔀 310 · 📋 360 - 39% open · ⏱️ 24.08.2022): @@ -8849,7 +8849,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin conda install -c conda-forge fairlearn ```
-
DALEX (🥉21 · ⭐ 1.1K) - moDel Agnostic Language for Exploration and eXplanation. ❗️GPL-3.0 +
DALEX (🥉21 · ⭐ 1.1K) - 用于模型探索和扩展的模块。❗️GPL-3.0 - [GitHub](https://github.com/ModelOriented/DALEX) (👨‍💻 20 · 🔀 140 · 📦 57 · 📋 370 - 5% open · ⏱️ 03.08.2022): @@ -8861,7 +8861,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install dalex ```
-
keract (🥉21 · ⭐ 990) - Layers Outputs and Gradients in Keras. Made easy. MIT +
keract (🥉21 · ⭐ 990) - 在Keras中分层输出和渐变。MIT - [GitHub](https://github.com/philipperemy/keract) (👨‍💻 16 · 🔀 180 · 📦 140 · 📋 87 - 5% open · ⏱️ 23.07.2022): @@ -8873,7 +8873,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install keract ```
-
tf-explain (🥉21 · ⭐ 940) - Interpretability Methods for tf.keras models with Tensorflow 2.x. MIT +
tf-explain (🥉21 · ⭐ 940) - 使用Tensorflow 2.x的tf.keras模型的可解释性方法。MIT - [GitHub](https://github.com/sicara/tf-explain) (👨‍💻 18 · 🔀 100 · 📦 130 · 📋 88 - 42% open · ⏱️ 30.06.2022): @@ -8885,7 +8885,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install tf-explain ```
-
random-forest-importances (🥉21 · ⭐ 510 · 💀) - Code to compute permutation and drop-column.. MIT +
random-forest-importances (🥉21 · ⭐ 510 · 💀) - 随机森林特征重要度计算。MIT - [GitHub](https://github.com/parrt/random-forest-importances) (👨‍💻 14 · 🔀 120 · 📦 100 · 📋 34 - 14% open · ⏱️ 30.01.2021): @@ -8897,7 +8897,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install rfpimp ```
-
sklearn-evaluation (🥉21 · ⭐ 340) - Machine learning model evaluation made easy: plots,.. MIT +
sklearn-evaluation (🥉21 · ⭐ 340) - 机器学习模型评估变得容易。MIT - [GitHub](https://github.com/ploomber/sklearn-evaluation) (👨‍💻 8 · 🔀 28 · 📦 49 · 📋 39 - 20% open · ⏱️ 22.08.2022): @@ -8909,7 +8909,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install sklearn-evaluation ```
-
DiCE (🥉20 · ⭐ 890) - Generate Diverse Counterfactual Explanations for any machine.. MIT +
DiCE (🥉20 · ⭐ 890) - 生成任何机器学习的各种反事实说明。MIT - [GitHub](https://github.com/interpretml/DiCE) (👨‍💻 14 · 🔀 120 · 📋 130 - 44% open · ⏱️ 06.07.2022): @@ -8921,7 +8921,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install dice-ml ```
-
TreeInterpreter (🥉20 · ⭐ 720 · 💀) - Package for interpreting scikit-learn's decision tree.. BSD-3 +
TreeInterpreter (🥉20 · ⭐ 720 · 💀) - 解释scikit-learn决策树的程序包。BSD-3 - [GitHub](https://github.com/andosa/treeinterpreter) (👨‍💻 11 · 🔀 140 · 📦 280 · 📋 23 - 82% open · ⏱️ 28.02.2021): @@ -8933,7 +8933,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install treeinterpreter ```
-
LIT (🥉19 · ⭐ 3K) - The Language Interpretability Tool: Interactively analyze NLP models for.. Apache-2 +
LIT (🥉19 · ⭐ 3K) - 语言可解释性工具:交互式分析NLP模型。Apache-2 - [GitHub](https://github.com/PAIR-code/lit) (👨‍💻 18 · 🔀 310 · 📦 11 · 📋 110 - 37% open · ⏱️ 15.03.2022): @@ -8945,7 +8945,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install lit-nlp ```
-
What-If Tool (🥉19 · ⭐ 740 · 💤) - Source code/webpage/demos for the What-If Tool. Apache-2 +
What-If Tool (🥉19 · ⭐ 740 · 💤) - What-If工具的源代码/网页/演示。Apache-2 - [GitHub](https://github.com/PAIR-code/what-if-tool) (👨‍💻 20 · 🔀 140 · 📋 110 - 52% open · ⏱️ 05.01.2022): @@ -8961,7 +8961,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin npm install wit-widget ```
-
deeplift (🥉19 · ⭐ 650 · 💤) - Public facing deeplift repo. MIT +
deeplift (🥉19 · ⭐ 650 · 💤) - Public facing deeplift repo。MIT - [GitHub](https://github.com/kundajelab/deeplift) (👨‍💻 11 · 🔀 150 · 📦 62 · 📋 85 - 43% open · ⏱️ 11.11.2021): @@ -8973,7 +8973,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install deeplift ```
-
aequitas (🥉19 · ⭐ 490 · 💀) - Bias and Fairness Audit Toolkit. MIT +
aequitas (🥉19 · ⭐ 490 · 💀) - 偏差和公平审计工具包。MIT - [GitHub](https://github.com/dssg/aequitas) (👨‍💻 16 · 🔀 90 · 📦 110 · 📋 61 - 65% open · ⏱️ 27.05.2021): @@ -8985,7 +8985,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install aequitas ```
-
model-card-toolkit (🥉19 · ⭐ 300) - a tool that leverages rich metadata and lineage.. Apache-2 +
model-card-toolkit (🥉19 · ⭐ 300) - 模型解释与分析卡片工具库。Apache-2 - [GitHub](https://github.com/tensorflow/model-card-toolkit) (👨‍💻 13 · 🔀 60 · 📦 10 · 📋 14 - 85% open · ⏱️ 28.04.2022): @@ -8997,7 +8997,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install model-card-toolkit ```
-
fairness-indicators (🥉19 · ⭐ 270) - Tensorflow's Fairness Evaluation and Visualization.. Apache-2 +
fairness-indicators (🥉19 · ⭐ 270) - Tensorflow的公平性评估和可视化。Apache-2 - [GitHub](https://github.com/tensorflow/fairness-indicators) (👨‍💻 33 · 🔀 68 · 📋 11 - 27% open · ⏱️ 26.07.2022): @@ -9009,7 +9009,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install fairness-indicators ```
-
iNNvestigate (🥉18 · ⭐ 1K) - A toolbox to iNNvestigate neural networks' predictions!. BSD-2 +
iNNvestigate (🥉18 · ⭐ 1K) - 神经网络预估分析工具箱。BSD-2 - [GitHub](https://github.com/albermax/innvestigate) (👨‍💻 19 · 🔀 220 · 📥 16 · 📋 230 - 19% open · ⏱️ 01.08.2022): @@ -9021,7 +9021,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install innvestigate ```
-
Skater (🥉17 · ⭐ 1K) - Python Library for Model Interpretation/Explanations. ❗️UPL-1.0 +
Skater (🥉17 · ⭐ 1K) - 用于模型解释/说明的Python库。❗️UPL-1.0 - [GitHub](https://github.com/oracle/Skater) (👨‍💻 36 · 🔀 170 · 📋 160 - 40% open · ⏱️ 11.02.2022): @@ -9037,7 +9037,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin conda install -c conda-forge skater ```
-
FlashTorch (🥉17 · ⭐ 680 · 💀) - Visualization toolkit for neural networks in PyTorch! Demo --. MIT +
FlashTorch (🥉17 · ⭐ 680 · 💀) - PyTorch中用于神经网络的可视化工具包。MIT - [GitHub](https://github.com/MisaOgura/flashtorch) (👨‍💻 2 · 🔀 84 · 📦 10 · 📋 31 - 29% open · ⏱️ 27.04.2021): @@ -9049,7 +9049,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install flashtorch ```
-
tcav (🥉17 · ⭐ 530 · 💤) - Code for the TCAV ML interpretability project. Apache-2 +
tcav (🥉17 · ⭐ 530 · 💤) - TCAV ML可解释性项目的代码。Apache-2 - [GitHub](https://github.com/tensorflow/tcav) (👨‍💻 19 · 🔀 130 · 📦 14 · 📋 61 - 11% open · ⏱️ 16.09.2021): @@ -9061,7 +9061,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install tcav ```
-
ExplainX.ai (🥉17 · ⭐ 320 · 💀) - Explainable AI framework for data scientists. Explain & debug any.. MIT +
ExplainX.ai (🥉17 · ⭐ 320 · 💀) - 适用于数据科学家的可解释AI框架。MIT - [GitHub](https://github.com/explainX/explainx) (👨‍💻 4 · 🔀 42 · 📥 4 · 📋 26 - 34% open · ⏱️ 02.02.2021): @@ -9073,7 +9073,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install explainx ```
-
XAI (🥉15 · ⭐ 840 · 💤) - XAI - An eXplainability toolbox for machine learning. MIT +
XAI (🥉15 · ⭐ 840 · 💤) - XAI-用于机器学习的可解释性工具箱。MIT - [GitHub](https://github.com/EthicalML/xai) (👨‍💻 3 · 🔀 120 · 📦 19 · 📋 9 - 22% open · ⏱️ 30.10.2021): @@ -9085,7 +9085,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install xai ```
-
Anchor (🥉15 · ⭐ 720) - Code for High-Precision Model-Agnostic Explanations paper. BSD-2 +
Anchor (🥉15 · ⭐ 720) - High-Precision Model-Agnostic Explanations论文代码。BSD-2 - [GitHub](https://github.com/marcotcr/anchor) (👨‍💻 10 · 🔀 99 · 📋 70 - 27% open · ⏱️ 19.07.2022): @@ -9097,7 +9097,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install anchor_exp ```
-
LOFO (🥉15 · ⭐ 480) - Leave One Feature Out Importance. MIT +
LOFO (🥉15 · ⭐ 480) - Leave One Feature Out特征重要度。MIT - [GitHub](https://github.com/aerdem4/lofo-importance) (👨‍💻 3 · 🔀 56 · 📦 19 · 📋 18 - 11% open · ⏱️ 27.04.2022): @@ -9109,7 +9109,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install lofo-importance ```
-
contextual-ai (🥉13 · ⭐ 81 · 💤) - Contextual AI adds explainability to different stages of.. Apache-2 +
contextual-ai (🥉13 · ⭐ 81 · 💤) - AI 模型可解释性工具。Apache-2 - [GitHub](https://github.com/SAP/contextual-ai) (👨‍💻 12 · 🔀 10 · 📋 12 - 8% open · ⏱️ 11.11.2021): @@ -9121,7 +9121,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install contextual-ai ```
-
Attribution Priors (🥉11 · ⭐ 100 · 💀) - Tools for training explainable models using.. MIT +
Attribution Priors (🥉11 · ⭐ 100 · 💀) - 训练可解释模型的工具。MIT - [GitHub](https://github.com/suinleelab/attributionpriors) (👨‍💻 6 · 🔀 10 · 📦 3 · 📋 5 - 40% open · ⏱️ 19.03.2021): @@ -9133,7 +9133,7 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin pip install attributionpriors ```
-
bias-detector (🥉11 · ⭐ 40 · 💤) - Bias Detector is a python package for detecting bias in machine.. MIT +
bias-detector (🥉11 · ⭐ 40 · 💤) - Bias Detector是用于检测机器偏差的python软件包。MIT - [GitHub](https://github.com/intuit/bias-detector) (👨‍💻 4 · 🔀 11 · ⏱️ 20.12.2021): @@ -9147,15 +9147,15 @@ _Libraries to visualize, explain, debug, evaluate, and interpret machine learnin

-## Vector Similarity Search (ANN) +## 向量相似度搜索(ANN) -Back to top +Back to top -_Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarity Search._ +_用于近似最近邻居搜索和向量索引/相似性搜索的库。_ 🔗 ANN Benchmarks ( ⭐ 3K) - Benchmarks of approximate nearest neighbor libraries in Python. -
Annoy (🥇31 · ⭐ 10K) - Approximate Nearest Neighbors in C++/Python optimized for memory usage.. Apache-2 +
Annoy (🥇31 · ⭐ 10K) - C++/Python中的近似最近邻居实现,并针对内存使用进行了优化。Apache-2 - [GitHub](https://github.com/spotify/annoy) (👨‍💻 82 · 🔀 1K · 📦 2.2K · 📋 350 - 10% open · ⏱️ 08.08.2022): @@ -9167,7 +9167,7 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit pip install annoy ```
-
Milvus (🥇29 · ⭐ 12K) - An open source embedding vector similarity search engine powered by.. Apache-2 +
Milvus (🥇29 · ⭐ 12K) - 一个开源的embedding嵌入向量相似度搜索引擎。Apache-2 - [GitHub](https://github.com/milvus-io/milvus) (👨‍💻 220 · 🔀 1.4K · 📥 44K · 📋 5.7K - 4% open · ⏱️ 26.08.2022): @@ -9183,7 +9183,7 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit docker pull milvusdb/milvus ```
-
NMSLIB (🥈28 · ⭐ 2.8K) - Non-Metric Space Library (NMSLIB): An efficient similarity search.. Apache-2 +
NMSLIB (🥈28 · ⭐ 2.8K) - 非度量空间库(NMSLIB):一种有效的相似度搜索。Apache-2 - [GitHub](https://github.com/nmslib/nmslib) (👨‍💻 48 · 🔀 400 · 📦 660 · 📋 400 - 14% open · ⏱️ 31.05.2022): @@ -9199,7 +9199,7 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit conda install -c conda-forge nmslib ```
-
PyNNDescent (🥈28 · ⭐ 660) - A Python nearest neighbor descent for approximate nearest neighbors. BSD-2 +
PyNNDescent (🥈28 · ⭐ 660) - 适用于近似最近邻查找的Python库。BSD-2 - [GitHub](https://github.com/lmcinnes/pynndescent) (👨‍💻 21 · 🔀 88 · 📦 2K · 📋 110 - 47% open · ⏱️ 21.07.2022): @@ -9215,7 +9215,7 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit conda install -c conda-forge pynndescent ```
-
Faiss (🥈27 · ⭐ 18K) - A library for efficient similarity search and clustering of dense vectors. MIT +
Faiss (🥈27 · ⭐ 18K) - 一个用于高效相似性搜索和密集向量聚类的库。MIT - [GitHub](https://github.com/facebookresearch/faiss) (👨‍💻 100 · 🔀 2.6K · 📦 720 · 📋 1.9K - 11% open · ⏱️ 08.08.2022): @@ -9231,7 +9231,7 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit conda install -c conda-forge faiss ```
-
hnswlib (🥈27 · ⭐ 2.1K) - Header-only C++/python library for fast approximate nearest neighbors. Apache-2 +
hnswlib (🥈27 · ⭐ 2.1K) - 仅标头的C++/python库,用于快速近似最近邻查找。Apache-2 - [GitHub](https://github.com/nmslib/hnswlib) (👨‍💻 56 · 🔀 380 · 📦 280 · 📋 250 - 50% open · ⏱️ 16.04.2022): @@ -9243,7 +9243,7 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit pip install hnswlib ```
-
Magnitude (🥉22 · ⭐ 1.5K · 💀) - A fast, efficient universal vector embedding utility package. MIT +
Magnitude (🥉22 · ⭐ 1.5K · 💀) - 快速,高效的通用向量嵌入实用程序包。MIT - [GitHub](https://github.com/plasticityai/magnitude) (👨‍💻 4 · 🔀 110 · 📦 240 · 📋 83 - 38% open · ⏱️ 17.07.2020): @@ -9255,7 +9255,7 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit pip install pymagnitude ```
-
NGT (🥉19 · ⭐ 930) - Nearest Neighbor Search with Neighborhood Graph and Tree for High-.. Apache-2 +
NGT (🥉19 · ⭐ 930) - 最近邻搜索算法实现包。Apache-2 - [GitHub](https://github.com/yahoojapan/NGT) (👨‍💻 14 · 🔀 94 · 📋 100 - 11% open · ⏱️ 15.08.2022): @@ -9267,7 +9267,7 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit pip install ngt ```
-
NearPy (🥉19 · ⭐ 710 · 💀) - Python framework for fast (approximated) nearest neighbour search in.. MIT +
NearPy (🥉19 · ⭐ 710 · 💀) - 用于快速(近似)最近邻搜索的Python框架。MIT - [GitHub](https://github.com/pixelogik/NearPy) (👨‍💻 18 · 🔀 140 · 📦 70 · 📋 62 - 38% open · ⏱️ 21.10.2018): @@ -9279,7 +9279,7 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit pip install NearPy ```
-
N2 (🥉18 · ⭐ 520 · 💀) - TOROS N2 - lightweight approximate Nearest Neighbor library which runs.. Apache-2 +
N2 (🥉18 · ⭐ 520 · 💀) - TOROS N2-快速运行的轻量级近似最近邻库。Apache-2 - [GitHub](https://github.com/kakao/n2) (👨‍💻 18 · 🔀 64 · 📦 23 · 📋 33 - 33% open · ⏱️ 20.05.2021): @@ -9291,7 +9291,7 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit pip install n2 ```
-
PySparNN (🥉11 · ⭐ 900 · 💀) - Approximate Nearest Neighbor Search for Sparse Data in Python!. BSD-3 +
PySparNN (🥉11 · ⭐ 900 · 💀) - C++/Python中的近似最近邻居实现,并针对内存使用进行了优化。BSD-3 - [GitHub](https://github.com/facebookresearch/pysparnn) (👨‍💻 5 · 🔀 140 · 📋 29 - 51% open · ⏱️ 31.01.2018): @@ -9301,13 +9301,13 @@ _Libraries for Approximate Nearest Neighbor Search and Vector Indexing/Similarit

-## Probabilistics & Statistics +## 概率统计 -Back to top +Back to top -_Libraries providing capabilities for probabilistic programming/reasoning, bayesian inference, gaussian processes, or statistics._ +_提供概率编程/推理,贝叶斯推理,高斯过程或统计信息的功能的库。_ -
Pyro (🥇30 · ⭐ 7.6K) - Deep universal probabilistic programming with Python and PyTorch. Apache-2 +
Pyro (🥇30 · ⭐ 7.6K) - 使用Python和PyTorch进行深度通用概率编程。Apache-2 - [GitHub](https://github.com/pyro-ppl/pyro) (👨‍💻 130 · 🔀 900 · 📦 820 · 📋 970 - 20% open · ⏱️ 05.08.2022): @@ -9319,7 +9319,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes pip install pyro-ppl ```
-
GPyTorch (🥇29 · ⭐ 2.8K) - A highly efficient and modular implementation of Gaussian Processes.. MIT +
GPyTorch (🥇29 · ⭐ 2.8K) - 高斯过程的高效和模块化实现。MIT - [GitHub](https://github.com/cornellius-gp/gpytorch) (👨‍💻 99 · 🔀 420 · 📦 680 · 📋 1.1K - 24% open · ⏱️ 24.08.2022): @@ -9331,7 +9331,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes pip install gpytorch ```
-
filterpy (🥇28 · ⭐ 2.4K) - Python Kalman filtering and optimal estimation library. Implements.. MIT +
filterpy (🥇28 · ⭐ 2.4K) - Python卡尔曼过滤和最佳估计库。MIT - [GitHub](https://github.com/rlabbe/filterpy) (👨‍💻 43 · 🔀 520 · 📦 1.6K · 📋 200 - 23% open · ⏱️ 22.08.2022): @@ -9347,7 +9347,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes conda install -c conda-forge filterpy ```
-
GPflow (🥇28 · ⭐ 1.7K) - Gaussian processes in TensorFlow. Apache-2 +
GPflow (🥇28 · ⭐ 1.7K) - TensorFlow中的高斯过程。Apache-2 - [GitHub](https://github.com/GPflow/GPflow) (👨‍💻 78 · 🔀 410 · 📦 390 · 📋 780 - 15% open · ⏱️ 17.08.2022): @@ -9363,7 +9363,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes conda install -c conda-forge gpflow ```
-
pingouin (🥈27 · ⭐ 1.2K) - Statistical package in Python based on Pandas. ❗️GPL-3.0 +
pingouin (🥈27 · ⭐ 1.2K) - 基于Pandas的Python统计软件包。❗️GPL-3.0 - [GitHub](https://github.com/raphaelvallat/pingouin) (👨‍💻 33 · 🔀 110 · 📦 680 · 📋 220 - 14% open · ⏱️ 18.07.2022): @@ -9379,7 +9379,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes conda install -c conda-forge pingouin ```
-
patsy (🥈27 · ⭐ 850) - Describing statistical models in Python using symbolic formulas. ❗Unlicensed +
patsy (🥈27 · ⭐ 850) - 使用符号公式描述Python中的统计模型。❗Unlicensed - [GitHub](https://github.com/pydata/patsy) (👨‍💻 17 · 🔀 88 · 📦 56K · 📋 130 - 46% open · ⏱️ 16.08.2022): @@ -9395,7 +9395,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes conda install -c conda-forge patsy ```
-
PyMC3 (🥈26 · ⭐ 6.9K) - Probabilistic Programming in Python: Bayesian Modeling and.. ❗Unlicensed +
PyMC3 (🥈26 · ⭐ 6.9K) - Python中的概率编程。❗Unlicensed - [GitHub](https://github.com/pymc-devs/pymc) (👨‍💻 410 · 🔀 1.6K · 📥 1.9K · 📦 690 · 📋 2.8K - 6% open · ⏱️ 25.08.2022): @@ -9411,7 +9411,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes conda install -c conda-forge pymc3 ```
-
pomegranate (🥈26 · ⭐ 2.9K) - Fast, flexible and easy to use probabilistic modelling in Python. MIT +
pomegranate (🥈26 · ⭐ 2.9K) - 在Python中快速,灵活且易于使用的概率建模。MIT - [GitHub](https://github.com/jmschrei/pomegranate) (👨‍💻 66 · 🔀 530 · 📦 740 · 📋 670 - 8% open · ⏱️ 04.07.2022): @@ -9427,7 +9427,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes conda install -c conda-forge pomegranate ```
-
hmmlearn (🥈26 · ⭐ 2.6K) - Hidden Markov Models in Python, with scikit-learn like API. BSD-3 +
hmmlearn (🥈26 · ⭐ 2.6K) - Python中的隐马尔可夫模型,具有类似于scikit-learn的API。BSD-3 - [GitHub](https://github.com/hmmlearn/hmmlearn) (👨‍💻 41 · 🔀 660 · 📦 1.4K · 📋 390 - 13% open · ⏱️ 04.07.2022): @@ -9443,7 +9443,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes conda install -c conda-forge hmmlearn ```
-
pgmpy (🥉25 · ⭐ 2.1K) - Python Library for learning (Structure and Parameter) and inference.. MIT +
pgmpy (🥉25 · ⭐ 2.1K) - 用于学习(结构和参数)和推理的Python库。MIT - [GitHub](https://github.com/pgmpy/pgmpy) (👨‍💻 110 · 🔀 630 · 📥 160 · 📦 400 · 📋 770 - 24% open · ⏱️ 22.08.2022): @@ -9455,7 +9455,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes pip install pgmpy ```
-
tensorflow-probability (🥉24 · ⭐ 3.8K) - Probabilistic reasoning and statistical analysis in.. Apache-2 +
tensorflow-probability (🥉24 · ⭐ 3.8K) - 概率推理与统计分析。Apache-2 - [GitHub](https://github.com/tensorflow/probability) (👨‍💻 460 · 🔀 960 · 📋 1.2K - 42% open · ⏱️ 26.08.2022): @@ -9471,7 +9471,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes conda install -c conda-forge tensorflow-probability ```
-
Edward (🥉23 · ⭐ 4.7K · 💀) - A probabilistic programming language in TensorFlow. Deep.. ❗Unlicensed +
Edward (🥉23 · ⭐ 4.7K · 💀) - TensorFlow中的一种概率编程语言。❗Unlicensed - [GitHub](https://github.com/blei-lab/edward) (👨‍💻 87 · 🔀 750 · 📥 15 · 📦 270 · 📋 510 - 36% open · ⏱️ 25.07.2018): @@ -9483,7 +9483,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes pip install edward ```
-
Orbit (🥉21 · ⭐ 1.5K) - A Python package for Bayesian forecasting with object-oriented.. ❗Unlicensed +
Orbit (🥉21 · ⭐ 1.5K) - 用于贝叶斯预测的Python软件包,具有面向对象的设计。❗Unlicensed - [GitHub](https://github.com/uber/orbit) (👨‍💻 18 · 🔀 110 · 📦 9 · 📋 370 - 12% open · ⏱️ 17.08.2022): @@ -9495,7 +9495,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes pip install orbit-ml ```
-
bambi (🥉20 · ⭐ 820) - BAyesian Model-Building Interface (Bambi) in Python. MIT +
bambi (🥉20 · ⭐ 820) - Python中的贝叶斯模型构建接口(Bambi)。MIT - [GitHub](https://github.com/bambinos/bambi) (👨‍💻 26 · 🔀 89 · 📦 32 · 📋 270 - 18% open · ⏱️ 21.08.2022): @@ -9507,7 +9507,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes pip install bambi ```
-
SALib (🥉20 · ⭐ 620) - Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris,.. MIT +
SALib (🥉20 · ⭐ 620) - Python(Numpy)中的灵敏度分析库。MIT - [GitHub](https://github.com/SALib/SALib) (👨‍💻 37 · 🔀 190 · 📋 280 - 15% open · ⏱️ 21.08.2022): @@ -9523,7 +9523,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes conda install -c conda-forge salib ```
-
scikit-posthocs (🥉20 · ⭐ 250) - Multiple Pairwise Comparisons (Post Hoc) Tests in Python. MIT +
scikit-posthocs (🥉20 · ⭐ 250) - Python中的多个成对比较(Post Hoc)测试。MIT - [GitHub](https://github.com/maximtrp/scikit-posthocs) (👨‍💻 10 · 🔀 28 · 📥 25 · 📋 47 - 12% open · ⏱️ 21.08.2022): @@ -9535,7 +9535,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes pip install scikit-posthocs ```
-
Funsor (🥉19 · ⭐ 200) - Functional tensors for probabilistic programming. Apache-2 +
Funsor (🥉19 · ⭐ 200) - 用于概率编程的函数张量。Apache-2 - [GitHub](https://github.com/pyro-ppl/funsor) (👨‍💻 10 · 🔀 17 · 📦 32 · 📋 140 - 47% open · ⏱️ 08.04.2022): @@ -9547,7 +9547,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes pip install funsor ```
-
Baal (🥉18 · ⭐ 630) - Using approximate bayesian posteriors in deep nets for active learning. Apache-2 +
Baal (🥉18 · ⭐ 630) - 在深度网络中使用近似贝叶斯后验进行主动学习。Apache-2 - [GitHub](https://github.com/baal-org/baal) (👨‍💻 16 · 🔀 60 · 📋 84 - 27% open · ⏱️ 22.08.2022): @@ -9559,7 +9559,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes pip install baal ```
-
PyStan (🥉18 · ⭐ 200) - PyStan, a Python interface to Stan, a platform for statistical modeling... ISC +
PyStan (🥉18 · ⭐ 200) - PyStan是Stan的Python接口。ISC - [GitHub](https://github.com/stan-dev/pystan) (👨‍💻 10 · 🔀 39 · 📋 180 - 2% open · ⏱️ 07.07.2022): @@ -9575,7 +9575,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes conda install -c conda-forge pystan ```
-
pyhsmm (🥉17 · ⭐ 520 · 💀) - Bayesian inference in HSMMs and HMMs. MIT +
pyhsmm (🥉17 · ⭐ 520 · 💀) - HSMM和HMM中的贝叶斯推断。MIT - [GitHub](https://github.com/mattjj/pyhsmm) (👨‍💻 13 · 🔀 160 · 📦 25 · 📋 96 - 37% open · ⏱️ 24.08.2020): @@ -9587,7 +9587,7 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes pip install pyhsmm ```
-
ZhuSuan (🥉14 · ⭐ 2.1K · 💀) - A probabilistic programming library for Bayesian deep learning,.. MIT +
ZhuSuan (🥉14 · ⭐ 2.1K · 💀) - TensorFlow中的一种概率编程语言。MIT - [GitHub](https://github.com/thu-ml/zhusuan) (👨‍💻 20 · 🔀 400 · 📋 60 - 11% open · ⏱️ 05.08.2019): @@ -9597,13 +9597,13 @@ _Libraries providing capabilities for probabilistic programming/reasoning, bayes

-## Adversarial Robustness +## 对抗学习与鲁棒性 -Back to top +Back to top -_Libraries for testing the robustness of machine learning models against attacks with adversarial/malicious examples._ +_用于测试机器学习模型抵抗攻击性/恶意示例的鲁棒性的库。_ -
Foolbox (🥇27 · ⭐ 2.3K) - A Python toolbox to create adversarial examples that fool neural networks.. MIT +
Foolbox (🥇27 · ⭐ 2.3K) - 一个Python工具箱,用于创建欺骗神经网络的对抗示例。MIT - [GitHub](https://github.com/bethgelab/foolbox) (👨‍💻 32 · 🔀 400 · 📦 320 · 📋 350 - 5% open · ⏱️ 25.05.2022): @@ -9615,7 +9615,7 @@ _Libraries for testing the robustness of machine learning models against attacks pip install foolbox ```
-
CleverHans (🥈26 · ⭐ 5.6K · 💤) - An adversarial example library for constructing attacks,.. MIT +
CleverHans (🥈26 · ⭐ 5.6K · 💤) - 一个用于构造攻击的对抗性示例库。MIT - [GitHub](https://github.com/cleverhans-lab/cleverhans) (👨‍💻 130 · 🔀 1.3K · 📦 350 · 📋 450 - 5% open · ⏱️ 23.09.2021): @@ -9627,7 +9627,7 @@ _Libraries for testing the robustness of machine learning models against attacks pip install cleverhans ```
-
TextAttack (🥈26 · ⭐ 2.1K) - TextAttack is a Python framework for adversarial attacks, data.. MIT +
TextAttack (🥈26 · ⭐ 2.1K) - TextAttack是用于对抗攻击,数据的Python框架。MIT - [GitHub](https://github.com/QData/TextAttack) (👨‍💻 53 · 🔀 250 · 📦 93 · 📋 220 - 9% open · ⏱️ 14.08.2022): @@ -9639,7 +9639,7 @@ _Libraries for testing the robustness of machine learning models against attacks pip install textattack ```
-
ART (🥉24 · ⭐ 3.2K) - Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning.. MIT +
ART (🥉24 · ⭐ 3.2K) - 对抗性鲁棒性工具箱(ART)- 用于机器学习的Python库。MIT - [GitHub](https://github.com/Trusted-AI/adversarial-robustness-toolbox) (👨‍💻 110 · 🔀 850 · 📦 250 · 📋 710 - 12% open · ⏱️ 25.08.2022): @@ -9651,7 +9651,7 @@ _Libraries for testing the robustness of machine learning models against attacks pip install adversarial-robustness-toolbox ```
-
advertorch (🥉18 · ⭐ 1.1K) - A Toolbox for Adversarial Robustness Research. ❗️GPL-3.0 +
advertorch (🥉18 · ⭐ 1.1K) - 对抗性鲁棒性研究的工具箱。❗️GPL-3.0 - [GitHub](https://github.com/BorealisAI/advertorch) (👨‍💻 21 · 🔀 170 · 📦 85 · 📋 52 - 34% open · ⏱️ 29.05.2022): @@ -9663,7 +9663,7 @@ _Libraries for testing the robustness of machine learning models against attacks pip install advertorch ```
-
robustness (🥉17 · ⭐ 720) - A library for experimenting with, training and evaluating neural.. MIT +
robustness (🥉17 · ⭐ 720) - 一个用于实验,训练和评估神经网络的库。MIT - [GitHub](https://github.com/MadryLab/robustness) (👨‍💻 13 · 🔀 140 · 📦 81 · 📋 75 - 25% open · ⏱️ 14.02.2022): @@ -9675,7 +9675,7 @@ _Libraries for testing the robustness of machine learning models against attacks pip install robustness ```
-
AdvBox (🥉15 · ⭐ 1.2K) - Advbox is a toolbox to generate adversarial examples that fool.. Apache-2 +
AdvBox (🥉15 · ⭐ 1.2K) - Advbox是一个工具箱,用于生成对抗示例。Apache-2 - [GitHub](https://github.com/advboxes/AdvBox) (👨‍💻 19 · 🔀 240 · 📋 38 - 21% open · ⏱️ 08.08.2022): @@ -9689,13 +9689,13 @@ _Libraries for testing the robustness of machine learning models against attacks

-## GPU Utilities +## GPU实用程序 -Back to top +Back to top -_Libraries that require and make use of CUDA/GPU system capabilities to optimize data handling and machine learning tasks._ +_需要并利用CUDA / GPU系统功能来优化数据处理和机器学习任务的库。_ -
CuPy (🥇32 · ⭐ 6.3K) - A NumPy-compatible array library accelerated by CUDA. MIT +
CuPy (🥇32 · ⭐ 6.3K) - CUDA加速了与NumPy兼容的数组库。MIT - [GitHub](https://github.com/cupy/cupy) (👨‍💻 310 · 🔀 590 · 📥 42K · 📦 1.2K · 📋 1.8K - 21% open · ⏱️ 23.08.2022): @@ -9715,7 +9715,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize docker pull cupy/cupy ```
-
gpustat (🥇28 · ⭐ 3K) - A simple command-line utility for querying and monitoring GPU status. MIT +
gpustat (🥇28 · ⭐ 3K) - 一个简单的命令行实用程序,用于查询和监控GPU状态。MIT - [GitHub](https://github.com/wookayin/gpustat) (👨‍💻 14 · 🔀 220 · 📦 2.1K · 📋 86 - 22% open · ⏱️ 09.08.2022): @@ -9731,7 +9731,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize conda install -c conda-forge gpustat ```
-
ArrayFire (🥈25 · ⭐ 3.9K) - ArrayFire: a general purpose GPU library. BSD-3 +
ArrayFire (🥈25 · ⭐ 3.9K) - ArrayFire:通用GPU库。BSD-3 - [GitHub](https://github.com/arrayfire/arrayfire) (👨‍💻 81 · 🔀 490 · 📥 2.7K · 📋 1.5K - 16% open · ⏱️ 09.07.2022): @@ -9743,7 +9743,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize pip install arrayfire ```
-
GPUtil (🥈25 · ⭐ 900 · 💀) - A Python module for getting the GPU status from NVIDA GPUs using.. MIT +
GPUtil (🥈25 · ⭐ 900 · 💀) - 一个Python模块,用于从NVIDA GPU获取GPU状态。MIT - [GitHub](https://github.com/anderskm/gputil) (👨‍💻 13 · 🔀 98 · 📦 2.3K · 📋 26 - 46% open · ⏱️ 16.08.2019): @@ -9755,7 +9755,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize pip install gputil ```
-
Apex (🥈24 · ⭐ 6.6K) - A PyTorch Extension: Tools for easy mixed precision and distributed.. BSD-3 +
Apex (🥈24 · ⭐ 6.6K) - PyTorch扩展:易于实现混合精度和分布式的工具。BSD-3 - [GitHub](https://github.com/NVIDIA/apex) (👨‍💻 100 · 🔀 1K · 📦 1.2K · 📋 1K - 53% open · ⏱️ 25.08.2022): @@ -9767,7 +9767,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize conda install -c conda-forge nvidia-apex ```
-
py3nvml (🥈23 · ⭐ 210) - Python 3 Bindings for NVML library. Get NVIDIA GPU status inside.. BSD-3 +
py3nvml (🥈23 · ⭐ 210) - NVML库的Python3接口。在内部获取NVIDIA GPU状态。BSD-3 - [GitHub](https://github.com/fbcotter/py3nvml) (👨‍💻 9 · 🔀 30 · 📦 510 · 📋 13 - 7% open · ⏱️ 14.04.2022): @@ -9783,7 +9783,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize conda install -c conda-forge py3nvml ```
-
PyCUDA (🥈22 · ⭐ 1.4K) - CUDA integration for Python, plus shiny features. ❗Unlicensed +
PyCUDA (🥈22 · ⭐ 1.4K) - 适用于Python的CUDA集成,有着出色的功能。❗Unlicensed - [GitHub](https://github.com/inducer/pycuda) (👨‍💻 76 · 🔀 250 · 📦 1.5K · 📋 220 - 27% open · ⏱️ 16.08.2022): @@ -9795,7 +9795,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize pip install pycuda ```
-
cuDF (🥉20 · ⭐ 4.9K) - cuDF - GPU DataFrame Library. Apache-2 +
cuDF (🥉20 · ⭐ 4.9K) - cuDF-GPU DataFrame库。Apache-2 - [GitHub](https://github.com/rapidsai/cudf) (👨‍💻 250 · 🔀 630 · 📋 4.8K - 12% open · ⏱️ 26.08.2022): @@ -9807,7 +9807,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize pip install cudf ```
-
scikit-cuda (🥉20 · ⭐ 910) - Python interface to GPU-powered libraries. ❗Unlicensed +
scikit-cuda (🥉20 · ⭐ 910) - GPU工具库的python接口。❗Unlicensed - [GitHub](https://github.com/lebedov/scikit-cuda) (👨‍💻 46 · 🔀 170 · 📦 200 · 📋 220 - 22% open · ⏱️ 31.03.2022): @@ -9819,7 +9819,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize pip install scikit-cuda ```
-
cuML (🥉19 · ⭐ 2.9K) - cuML - RAPIDS Machine Learning Library. Apache-2 +
cuML (🥉19 · ⭐ 2.9K) - cuML-RAPIDS机器学习库。Apache-2 - [GitHub](https://github.com/rapidsai/cuml) (👨‍💻 160 · 🔀 420 · 📋 2.1K - 32% open · ⏱️ 25.08.2022): @@ -9831,7 +9831,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize pip install cuml ```
-
Vulkan Kompute (🥉18 · ⭐ 920) - General purpose GPU compute framework for cross vendor.. Apache-2 +
Vulkan Kompute (🥉18 · ⭐ 920) - 适用于跨供应商的通用GPU计算框架。Apache-2 - [GitHub](https://github.com/KomputeProject/kompute) (👨‍💻 19 · 🔀 64 · 📥 170 · 📦 4 · 📋 180 - 32% open · ⏱️ 21.06.2022): @@ -9843,7 +9843,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize pip install kp ```
-
DALI (🥉17 · ⭐ 4K) - A GPU-accelerated library containing highly optimized building blocks.. Apache-2 +
DALI (🥉17 · ⭐ 4K) - GPU加速的库,其中包含高度优化的构建块。Apache-2 - [GitHub](https://github.com/NVIDIA/DALI) (👨‍💻 77 · 🔀 500 · 📋 1.2K - 15% open · ⏱️ 25.08.2022): @@ -9851,7 +9851,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize git clone https://github.com/NVIDIA/DALI ```
-
nvidia-ml-py3 (🥉17 · ⭐ 86 · 💀) - Python 3 Bindings for the NVIDIA Management Library. ❗Unlicensed +
nvidia-ml-py3 (🥉17 · ⭐ 86 · 💀) - NVIDIA Management Library的Python3接口。❗Unlicensed - [GitHub](https://github.com/nicolargo/nvidia-ml-py3) (👨‍💻 2 · 🔀 18 · 📦 6.2K · ⏱️ 06.03.2019): @@ -9863,7 +9863,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize pip install nvidia-ml-py3 ```
-
cuGraph (🥉16 · ⭐ 1.1K) - cuGraph - RAPIDS Graph Analytics Library. Apache-2 +
cuGraph (🥉16 · ⭐ 1.1K) - cuGraph-RAPIDS图形分析库。Apache-2 - [GitHub](https://github.com/rapidsai/cugraph) (👨‍💻 90 · 🔀 210 · 📋 990 - 20% open · ⏱️ 25.08.2022): @@ -9875,7 +9875,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize pip install cugraph ```
-
BlazingSQL (🥉15 · ⭐ 1.8K · 💤) - BlazingSQL is a lightweight, GPU accelerated, SQL engine for.. Apache-2 +
BlazingSQL (🥉15 · ⭐ 1.8K · 💤) - BlazingSQL是一种用于GPU的轻量级,GPU加速的引擎。Apache-2 - [GitHub](https://github.com/BlazingDB/blazingsql) (👨‍💻 49 · 🔀 170 · 📋 710 - 17% open · ⏱️ 30.09.2021): @@ -9887,7 +9887,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize conda install -c blazingsql blazingsql-protocol ```
-
SpeedTorch (🥉14 · ⭐ 660 · 💀) - Library for faster pinned CPU - GPU transfer in Pytorch. MIT +
SpeedTorch (🥉14 · ⭐ 660 · 💀) - 用于更快的Pytorch中CPU-GPU传输的工具库。MIT - [GitHub](https://github.com/Santosh-Gupta/SpeedTorch) (👨‍💻 3 · 🔀 39 · 📦 4 · 📋 6 - 66% open · ⏱️ 21.02.2020): @@ -9899,7 +9899,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize pip install SpeedTorch ```
-
cuSignal (🥉14 · ⭐ 610) - GPU accelerated signal processing. Apache-2 +
cuSignal (🥉14 · ⭐ 610) - GPU加速信号处理。Apache-2 - [GitHub](https://github.com/rapidsai/cusignal) (👨‍💻 39 · 🔀 96 · 📋 140 - 11% open · ⏱️ 10.08.2022): @@ -9907,7 +9907,7 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize git clone https://github.com/rapidsai/cusignal ```
-
ipyexperiments (🥉11 · ⭐ 150 · 💤) - jupyter/ipython experiment containers for GPU and.. ❗Unlicensed +
ipyexperiments (🥉11 · ⭐ 150 · 💤) - jupyter/ipython实验容器。❗Unlicensed - [GitHub](https://github.com/stas00/ipyexperiments) (👨‍💻 3 · 🔀 11 · 📦 6 · ⏱️ 07.12.2021): @@ -9921,13 +9921,13 @@ _Libraries that require and make use of CUDA/GPU system capabilities to optimize

-## Tensorflow Utilities +## Tensorflow实用程序 -Back to top +Back to top -_Libraries that extend TensorFlow with additional capabilities._ +_TensorFlow的拓展工具库。_ -
TF Addons (🥇33 · ⭐ 1.6K) - Useful extra functionality for TensorFlow 2.x maintained by.. Apache-2 +
TF Addons (🥇33 · ⭐ 1.6K) - 由TensorFlow 2.x维护的有用额外功能。Apache-2 - [GitHub](https://github.com/tensorflow/addons) (👨‍💻 200 · 🔀 530 · 📦 7.2K · 📋 920 - 21% open · ⏱️ 24.08.2022): @@ -9939,7 +9939,7 @@ _Libraries that extend TensorFlow with additional capabilities._ pip install tensorflow-addons ```
-
tensor2tensor (🥇31 · ⭐ 13K) - Library of deep learning models and datasets designed to.. Apache-2 +
tensor2tensor (🥇31 · ⭐ 13K) - 设计深度学习模型和数据集的库。Apache-2 - [GitHub](https://github.com/tensorflow/tensor2tensor) (👨‍💻 240 · 🔀 3K · 📦 1.2K · 📋 1.2K - 45% open · ⏱️ 09.08.2022): @@ -9951,7 +9951,7 @@ _Libraries that extend TensorFlow with additional capabilities._ pip install tensor2tensor ```
-
tensorflow-hub (🥇31 · ⭐ 3.2K) - A library for transfer learning by reusing parts of.. Apache-2 +
tensorflow-hub (🥇31 · ⭐ 3.2K) - 通过重用部分库来进行迁移学习的库。Apache-2 - [GitHub](https://github.com/tensorflow/hub) (👨‍💻 94 · 🔀 1.6K · 📦 13K · 📋 650 - 2% open · ⏱️ 23.08.2022): @@ -9967,7 +9967,7 @@ _Libraries that extend TensorFlow with additional capabilities._ conda install -c conda-forge tensorflow-hub ```
-
TensorFlow Transform (🥈30 · ⭐ 930 · 📈) - Input pipeline framework. Apache-2 +
TensorFlow Transform (🥈30 · ⭐ 930 · 📈) - 输入管道框架。Apache-2 - [GitHub](https://github.com/tensorflow/transform) (👨‍💻 27 · 🔀 190 · 📦 1K · 📋 190 - 17% open · ⏱️ 25.08.2022): @@ -9979,7 +9979,7 @@ _Libraries that extend TensorFlow with additional capabilities._ pip install tensorflow-transform ```
-
TF Model Optimization (🥈29 · ⭐ 1.3K) - A toolkit to optimize ML models for deployment for.. Apache-2 +
TF Model Optimization (🥈29 · ⭐ 1.3K) - 用于优化ML模型以进行部署的工具包。Apache-2 - [GitHub](https://github.com/tensorflow/model-optimization) (👨‍💻 71 · 🔀 280 · 📦 2K · 📋 300 - 48% open · ⏱️ 23.08.2022): @@ -9991,7 +9991,7 @@ _Libraries that extend TensorFlow with additional capabilities._ pip install tensorflow-model-optimization ```
-
Neural Structured Learning (🥉26 · ⭐ 930) - Training neural models with structured signals. Apache-2 +
Neural Structured Learning (🥉26 · ⭐ 930) - 用结构化信号训练神经模型。Apache-2 - [GitHub](https://github.com/tensorflow/neural-structured-learning) (👨‍💻 34 · 🔀 170 · 📦 260 · 📋 65 - 3% open · ⏱️ 19.08.2022): @@ -10015,7 +10015,7 @@ _Libraries that extend TensorFlow with additional capabilities._ pip install tensorflow-io ```
-
efficientnet (🥉24 · ⭐ 2K · 💀) - Implementation of EfficientNet model. Keras and.. Apache-2 +
efficientnet (🥉24 · ⭐ 2K · 💀) - EfficientNet模型的实现。Apache-2 - [GitHub](https://github.com/qubvel/efficientnet) (👨‍💻 10 · 🔀 450 · 📥 240K · 📦 1.1K · 📋 110 - 48% open · ⏱️ 16.07.2021): @@ -10027,7 +10027,7 @@ _Libraries that extend TensorFlow with additional capabilities._ pip install efficientnet ```
-
TensorFlow Cloud (🥉23 · ⭐ 330) - The TensorFlow Cloud repository provides APIs that.. Apache-2 +
TensorFlow Cloud (🥉23 · ⭐ 330) - TensorFlow Cloud存储库提供的API。Apache-2 - [GitHub](https://github.com/tensorflow/cloud) (👨‍💻 27 · 🔀 71 · 📦 170 · 📋 82 - 68% open · ⏱️ 24.03.2022): @@ -10039,7 +10039,7 @@ _Libraries that extend TensorFlow with additional capabilities._ pip install tensorflow-cloud ```
-
TensorNets (🥉20 · ⭐ 1K · 💀) - High level network definitions with pre-trained weights in.. MIT +
TensorNets (🥉20 · ⭐ 1K · 💀) - 具有预先训练的权重的高级网络定义。MIT - [GitHub](https://github.com/taehoonlee/tensornets) (👨‍💻 6 · 🔀 180 · 📦 52 · 📋 58 - 27% open · ⏱️ 02.01.2021): @@ -10051,7 +10051,7 @@ _Libraries that extend TensorFlow with additional capabilities._ pip install tensornets ```
-
TF Compression (🥉19 · ⭐ 640) - Data compression in TensorFlow. Apache-2 +
TF Compression (🥉19 · ⭐ 640) - TensorFlow中的数据压缩。Apache-2 - [GitHub](https://github.com/tensorflow/compression) (👨‍💻 16 · 🔀 210 · 📋 87 - 2% open · ⏱️ 25.08.2022): @@ -10063,7 +10063,7 @@ _Libraries that extend TensorFlow with additional capabilities._ pip install tensorflow-compression ```
-
Saliency (🥉17 · ⭐ 810) - Framework-agnostic implementation for state-of-the-art saliency.. Apache-2 +
Saliency (🥉17 · ⭐ 810) - 与框架无关的实现,可实现最新的显着性。Apache-2 - [GitHub](https://github.com/PAIR-code/saliency) (👨‍💻 15 · 🔀 170 · 📦 41 · ⏱️ 13.05.2022): @@ -10075,7 +10075,7 @@ _Libraries that extend TensorFlow with additional capabilities._ pip install saliency ```
-
tffm (🥉17 · ⭐ 780 · 💤) - TensorFlow implementation of an arbitrary order Factorization Machine. MIT +
tffm (🥉17 · ⭐ 780 · 💤) - 任意阶乘分解机的TensorFlow实现。MIT - [GitHub](https://github.com/geffy/tffm) (👨‍💻 10 · 🔀 180 · 📦 11 · 📋 40 - 45% open · ⏱️ 17.01.2022): @@ -10089,13 +10089,13 @@ _Libraries that extend TensorFlow with additional capabilities._

-## Sklearn Utilities +## Sklearn实用程序 -Back to top +Back to top -_Libraries that extend scikit-learn with additional capabilities._ +_scikit-learn的拓展工具库。_ -
imbalanced-learn (🥇32 · ⭐ 6K) - A Python Package to Tackle the Curse of Imbalanced.. MIT +
imbalanced-learn (🥇32 · ⭐ 6K) - 一个解决不平衡类别数据建模的Python程序包。MIT - [GitHub](https://github.com/scikit-learn-contrib/imbalanced-learn) (👨‍💻 63 · 🔀 1.1K · 📦 12K · 📋 510 - 8% open · ⏱️ 16.05.2022): @@ -10111,7 +10111,7 @@ _Libraries that extend scikit-learn with additional capabilities._ conda install -c conda-forge imbalanced-learn ```
-
MLxtend (🥇30 · ⭐ 4.1K) - A library of extension and helper modules for Python's data.. ❗Unlicensed +
MLxtend (🥇30 · ⭐ 4.1K) - 用于Python数据的扩展和帮助程序模块库。❗Unlicensed - [GitHub](https://github.com/rasbt/mlxtend) (👨‍💻 90 · 🔀 760 · 📦 6.6K · 📋 420 - 25% open · ⏱️ 10.08.2022): @@ -10143,7 +10143,7 @@ _Libraries that extend scikit-learn with additional capabilities._ conda install -c conda-forge category_encoders ```
-
fancyimpute (🥈25 · ⭐ 1.1K · 💤) - Multivariate imputation and matrix completion.. Apache-2 +
fancyimpute (🥈25 · ⭐ 1.1K · 💤) - 多元插补和矩阵补全算法。Apache-2 - [GitHub](https://github.com/iskandr/fancyimpute) (👨‍💻 12 · 🔀 160 · 📦 1.2K · 📋 110 - 1% open · ⏱️ 21.10.2021): @@ -10155,7 +10155,7 @@ _Libraries that extend scikit-learn with additional capabilities._ pip install fancyimpute ```
-
scikit-multilearn (🥈24 · ⭐ 770) - A scikit-learn based module for multi-label et. al... BSD-2 +
scikit-multilearn (🥈24 · ⭐ 770) - 基于scikit-learn的多标签等模块。BSD-2 - [GitHub](https://github.com/scikit-multilearn/scikit-multilearn) (👨‍💻 17 · 🔀 140 · 📦 820 · 📋 180 - 46% open · ⏱️ 09.07.2022): @@ -10167,7 +10167,7 @@ _Libraries that extend scikit-learn with additional capabilities._ pip install scikit-multilearn ```
-
scikit-opt (🥈23 · ⭐ 3.5K) - Genetic Algorithm, Particle Swarm Optimization, Simulated.. MIT +
scikit-opt (🥈23 · ⭐ 3.5K) - 遗传算法,粒子群优化等实现。MIT - [GitHub](https://github.com/guofei9987/scikit-opt) (👨‍💻 16 · 🔀 800 · 📦 83 · 📋 150 - 30% open · ⏱️ 15.07.2022): @@ -10179,7 +10179,7 @@ _Libraries that extend scikit-learn with additional capabilities._ pip install scikit-opt ```
-
scikit-lego (🥈22 · ⭐ 880) - Extra blocks for scikit-learn pipelines. MIT +
scikit-lego (🥈22 · ⭐ 880) - scikit学习管道的额外块。MIT - [GitHub](https://github.com/koaning/scikit-lego) (👨‍💻 52 · 🔀 90 · 📦 59 · 📋 240 - 9% open · ⏱️ 18.08.2022): @@ -10195,7 +10195,7 @@ _Libraries that extend scikit-learn with additional capabilities._ conda install -c conda-forge scikit-lego ```
-
iterative-stratification (🥈22 · ⭐ 710) - scikit-learn cross validators for iterative.. BSD-3 +
iterative-stratification (🥈22 · ⭐ 710) - scikit-learn交叉验证器。BSD-3 - [GitHub](https://github.com/trent-b/iterative-stratification) (👨‍💻 7 · 🔀 64 · 📦 220 · 📋 20 - 5% open · ⏱️ 06.06.2022): @@ -10207,7 +10207,7 @@ _Libraries that extend scikit-learn with additional capabilities._ pip install iterative-stratification ```
-
sklearn-crfsuite (🥈22 · ⭐ 410 · 💀) - scikit-learn inspired API for CRFsuite. ❗Unlicensed +
sklearn-crfsuite (🥈22 · ⭐ 410 · 💀) - 用于CRFsuite的scikit-learn启发式API。❗Unlicensed - [GitHub](https://github.com/TeamHG-Memex/sklearn-crfsuite) (👨‍💻 6 · 🔀 190 · 📦 4K · 📋 56 - 58% open · ⏱️ 05.12.2019): @@ -10219,7 +10219,7 @@ _Libraries that extend scikit-learn with additional capabilities._ pip install sklearn-crfsuite ```
-
combo (🥉20 · ⭐ 590) - (AAAI' 20) A Python Toolbox for Machine Learning Model.. BSD-2 xgboost +
combo (🥉20 · ⭐ 590) - (AAAI'20)用于机器学习模型的Python工具箱。BSD-2 xgboost - [GitHub](https://github.com/yzhao062/combo) (👨‍💻 2 · 🔀 100 · 📦 480 · 📋 13 - 76% open · ⏱️ 07.07.2022): @@ -10231,7 +10231,7 @@ _Libraries that extend scikit-learn with additional capabilities._ pip install combo ```
-
skope-rules (🥉20 · ⭐ 480 · 💀) - machine learning with logical rules in Python. ❗Unlicensed +
skope-rules (🥉20 · ⭐ 480 · 💀) - 使用Python中的逻辑规则进行机器学习。❗Unlicensed - [GitHub](https://github.com/scikit-learn-contrib/skope-rules) (👨‍💻 18 · 🔀 79 · 📦 130 · 📋 31 - 80% open · ⏱️ 23.10.2020): @@ -10243,7 +10243,7 @@ _Libraries that extend scikit-learn with additional capabilities._ pip install skope-rules ```
-
sklearn-contrib-lightning (🥉19 · ⭐ 1.6K · 💤) - Large-scale linear classification, regression and.. ❗Unlicensed +
sklearn-contrib-lightning (🥉19 · ⭐ 1.6K · 💤) - 大规模线性分类,回归分析等。❗Unlicensed - [GitHub](https://github.com/scikit-learn-contrib/lightning) (👨‍💻 17 · 🔀 180 · 📥 230 · 📦 100 · 📋 88 - 52% open · ⏱️ 30.01.2022): @@ -10259,7 +10259,7 @@ _Libraries that extend scikit-learn with additional capabilities._ conda install -c conda-forge sklearn-contrib-lightning ```
-
DESlib (🥉17 · ⭐ 420) - A Python library for dynamic classifier and ensemble selection. BSD-3 +
DESlib (🥉17 · ⭐ 420) - 一个用于动态分类器和集成选择的Python库。BSD-3 - [GitHub](https://github.com/scikit-learn-contrib/DESlib) (👨‍💻 14 · 🔀 63 · 📦 29 · 📋 150 - 10% open · ⏱️ 07.06.2022): @@ -10271,7 +10271,7 @@ _Libraries that extend scikit-learn with additional capabilities._ pip install deslib ```
-
celer (🥉17 · ⭐ 160) - Fast solver for L1-type problems: Lasso, sparse Logisitic regression,.. BSD-3 +
celer (🥉17 · ⭐ 160) - L1型问题的快速求解器:Lasso,稀疏Logisitic回归等BSD-3 - [GitHub](https://github.com/mathurinm/celer) (👨‍💻 11 · 🔀 25 · 📦 13 · 📋 90 - 20% open · ⏱️ 23.08.2022): @@ -10283,7 +10283,7 @@ _Libraries that extend scikit-learn with additional capabilities._ pip install celer ```
-
scikit-tda (🥉16 · ⭐ 360) - Topological Data Analysis for Python. ❗Unlicensed +
scikit-tda (🥉16 · ⭐ 360) - Python的拓扑数据分析。❗Unlicensed - [GitHub](https://github.com/scikit-tda/scikit-tda) (👨‍💻 4 · 🔀 44 · 📦 33 · 📋 19 - 78% open · ⏱️ 13.03.2022): @@ -10295,7 +10295,7 @@ _Libraries that extend scikit-learn with additional capabilities._ pip install scikit-tda ```
-
skggm (🥉16 · ⭐ 210) - Scikit-learn compatible estimation of general graphical models. MIT +
skggm (🥉16 · ⭐ 210) - 通用图形模型的Scikit学习兼容估计。MIT - [GitHub](https://github.com/skggm/skggm) (👨‍💻 6 · 🔀 36 · 📦 8 · 📋 75 - 37% open · ⏱️ 11.03.2022): @@ -10307,7 +10307,7 @@ _Libraries that extend scikit-learn with additional capabilities._ pip install skggm ```
-
dabl (🥉13 · ⭐ 120 · 💀) - Data Analysis Baseline Library. BSD-3 +
dabl (🥉13 · ⭐ 120 · 💀) - 数据分析基准库。BSD-3 - [GitHub](https://github.com/amueller/dabl) (👨‍💻 21 · 🔀 10 · ⏱️ 09.07.2021): @@ -10321,13 +10321,13 @@ _Libraries that extend scikit-learn with additional capabilities._

-## Pytorch Utilities +## Pytorch实用程序 -Back to top +Back to top -_Libraries that extend Pytorch with additional capabilities._ +_Pytorch的拓展工具库。_ -
PML (🥇28 · ⭐ 4.7K) - The easiest way to use deep metric learning in your application. Modular,.. MIT +
PML (🥇28 · ⭐ 4.7K) - 在应用程序中使用深度度量学习的最简单方法。MIT - [GitHub](https://github.com/KevinMusgrave/pytorch-metric-learning) (👨‍💻 27 · 🔀 560 · 📦 320 · 📋 380 - 13% open · ⏱️ 13.08.2022): @@ -10343,7 +10343,7 @@ _Libraries that extend Pytorch with additional capabilities._ conda install -c metric-learning pytorch-metric-learning ```
-
pretrainedmodels (🥇27 · ⭐ 8.6K · 💀) - Pretrained ConvNets for pytorch: NASNet, ResNeXt,.. BSD-3 +
pretrainedmodels (🥇27 · ⭐ 8.6K · 💀) - pytorch预训练的ConvNets:NASNet,ResNeXt等BSD-3 - [GitHub](https://github.com/Cadene/pretrained-models.pytorch) (👨‍💻 22 · 🔀 1.8K · 📦 1.8K · 📋 180 - 46% open · ⏱️ 16.04.2020): @@ -10355,7 +10355,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install pretrainedmodels ```
-
pytorch-optimizer (🥇26 · ⭐ 2.5K · 💤) - torch-optimizer -- collection of optimizers for.. Apache-2 +
pytorch-optimizer (🥇26 · ⭐ 2.5K · 💤) - torch-optimizer - pytorch的优化器集合。Apache-2 - [GitHub](https://github.com/jettify/pytorch-optimizer) (👨‍💻 25 · 🔀 240 · 📦 670 · 📋 50 - 42% open · ⏱️ 11.11.2021): @@ -10367,7 +10367,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install torch_optimizer ```
-
pytorch-summary (🥈25 · ⭐ 3.6K · 💀) - Model summary in PyTorch similar to `model.summary()`.. MIT +
pytorch-summary (🥈25 · ⭐ 3.6K · 💀) - PyTorch中的模型摘要类似于`model.summary()`。MIT - [GitHub](https://github.com/sksq96/pytorch-summary) (👨‍💻 11 · 🔀 400 · 📦 5.7K · 📋 140 - 69% open · ⏱️ 10.05.2021): @@ -10379,7 +10379,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install torchsummary ```
-
torchdiffeq (🥈24 · ⭐ 4.2K) - Differentiable ODE solvers with full GPU support and.. MIT +
torchdiffeq (🥈24 · ⭐ 4.2K) - 具有完整GPU支持的可微分ODE求解器。MIT - [GitHub](https://github.com/rtqichen/torchdiffeq) (👨‍💻 21 · 🔀 720 · 📦 300 · 📋 180 - 21% open · ⏱️ 10.08.2022): @@ -10391,7 +10391,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install torchdiffeq ```
-
SRU (🥈22 · ⭐ 2.1K · 💀) - Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755). MIT +
SRU (🥈22 · ⭐ 2.1K · 💀) - 与CNN一样快地训练RNN(https://arxiv.org/abs/1709.02755)。MIT - [GitHub](https://github.com/asappresearch/sru) (👨‍💻 21 · 🔀 300 · 📦 18 · 📋 130 - 46% open · ⏱️ 19.05.2021): @@ -10403,7 +10403,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install sru ```
-
EfficientNet-PyTorch (🥈21 · ⭐ 7.1K · 💀) - A PyTorch implementation of EfficientNet and.. Apache-2 +
EfficientNet-PyTorch (🥈21 · ⭐ 7.1K · 💀) - EfficientNet等模型的PyTorch实现Apache-2 - [GitHub](https://github.com/lukemelas/EfficientNet-PyTorch) (👨‍💻 24 · 🔀 1.4K · 📥 1.9M · 📋 280 - 50% open · ⏱️ 15.04.2021): @@ -10415,7 +10415,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install efficientnet-pytorch ```
-
TabNet (🥈21 · ⭐ 1.8K) - PyTorch implementation of TabNet paper :.. MIT +
TabNet (🥈21 · ⭐ 1.8K) - Efficient Neural Architecture Search的Pytorch实现。MIT - [GitHub](https://github.com/dreamquark-ai/tabnet) (👨‍💻 19 · 🔀 370 · 📋 230 - 7% open · ⏱️ 27.06.2022): @@ -10427,7 +10427,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install pytorch-tabnet ```
-
EfficientNets (🥈21 · ⭐ 1.5K · 💀) - Pretrained EfficientNet, EfficientNet-Lite, MixNet,.. Apache-2 +
EfficientNets (🥈21 · ⭐ 1.5K · 💀) - 预训练的EfficientNet,EfficientNet-Lite,MixNet等Apache-2 - [GitHub](https://github.com/rwightman/gen-efficientnet-pytorch) (👨‍💻 5 · 🔀 200 · 📦 120 · 📋 54 - 5% open · ⏱️ 08.07.2021): @@ -10439,7 +10439,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install geffnet ```
-
Pytorch Toolbelt (🥈21 · ⭐ 1.3K) - PyTorch extensions for fast R&D prototyping and Kaggle.. MIT +
Pytorch Toolbelt (🥈21 · ⭐ 1.3K) - PyTorch扩展用于快速研发原型和Kaggle实验。MIT - [GitHub](https://github.com/BloodAxe/pytorch-toolbelt) (👨‍💻 7 · 🔀 100 · 📋 24 - 8% open · ⏱️ 20.08.2022): @@ -10451,7 +10451,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install pytorch_toolbelt ```
-
PyTorch Sparse (🥈21 · ⭐ 710) - PyTorch Extension Library of Optimized Autograd Sparse.. MIT +
PyTorch Sparse (🥈21 · ⭐ 710) - 优化图聚类的PyTorch扩展库MIT - [GitHub](https://github.com/rusty1s/pytorch_sparse) (👨‍💻 32 · 🔀 100 · 📋 200 - 13% open · ⏱️ 22.08.2022): @@ -10463,7 +10463,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install torch-sparse ```
-
reformer-pytorch (🥉20 · ⭐ 1.8K) - Reformer, the efficient Transformer, in Pytorch. MIT +
reformer-pytorch (🥉20 · ⭐ 1.8K) - Reformer,Pytorch中高效的transformer实现。MIT - [GitHub](https://github.com/lucidrains/reformer-pytorch) (👨‍💻 11 · 🔀 240 · 📋 120 - 11% open · ⏱️ 24.06.2022): @@ -10475,7 +10475,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install reformer-pytorch ```
-
Torchmeta (🥉20 · ⭐ 1.7K · 💤) - A collection of extensions and data-loaders for few-shot.. MIT +
Torchmeta (🥉20 · ⭐ 1.7K · 💤) - 少量学习的扩展程序和数据加载器的集合。MIT - [GitHub](https://github.com/tristandeleu/pytorch-meta) (👨‍💻 12 · 🔀 220 · 📦 97 · 📋 130 - 32% open · ⏱️ 20.09.2021): @@ -10487,7 +10487,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install torchmeta ```
-
torch-scatter (🥉20 · ⭐ 1.1K) - PyTorch Extension Library of Optimized Scatter Operations. MIT +
torch-scatter (🥉20 · ⭐ 1.1K) - 优化图聚类的PyTorch扩展库MIT - [GitHub](https://github.com/rusty1s/pytorch_scatter) (👨‍💻 22 · 🔀 120 · 📋 270 - 6% open · ⏱️ 18.08.2022): @@ -10499,7 +10499,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install torch-scatter ```
-
Performer Pytorch (🥉20 · ⭐ 860) - An implementation of Performer, a linear attention-.. MIT +
Performer Pytorch (🥉20 · ⭐ 860) - Performer的实现。MIT - [GitHub](https://github.com/lucidrains/performer-pytorch) (👨‍💻 6 · 🔀 120 · 📦 49 · 📋 78 - 44% open · ⏱️ 02.02.2022): @@ -10511,7 +10511,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install performer-pytorch ```
-
Poutyne (🥉20 · ⭐ 530) - A simplified framework and utilities for PyTorch. ❗️LGPL-3.0 +
Poutyne (🥉20 · ⭐ 530) - PyTorch的简化框架和实用程序。❗️LGPL-3.0 - [GitHub](https://github.com/GRAAL-Research/poutyne) (👨‍💻 18 · 🔀 62 · 📦 91 · 📋 53 - 15% open · ⏱️ 16.07.2022): @@ -10523,7 +10523,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install poutyne ```
-
AdaBound (🥉19 · ⭐ 2.9K · 💀) - An optimizer that trains as fast as Adam and as good as SGD. Apache-2 +
AdaBound (🥉19 · ⭐ 2.9K · 💀) - 训练速度与Adam一样快且与SGD一样好的优化器。Apache-2 - [GitHub](https://github.com/Luolc/AdaBound) (👨‍💻 2 · 🔀 320 · 📦 140 · 📋 25 - 72% open · ⏱️ 06.03.2019): @@ -10535,7 +10535,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install adabound ```
-
Antialiased CNNs (🥉19 · ⭐ 1.6K · 💤) - pip install antialiased-cnns to improve stability and.. ❗️CC BY-NC-SA 4.0 +
Antialiased CNNs (🥉19 · ⭐ 1.6K · 💤) - pip安装antialiased-cnns以提高稳定性等。❗️CC BY-NC-SA 4.0 - [GitHub](https://github.com/adobe/antialiased-cnns) (👨‍💻 6 · 🔀 200 · 📦 29 · 📋 44 - 29% open · ⏱️ 29.09.2021): @@ -10547,7 +10547,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install antialiased-cnns ```
-
Higher (🥉19 · ⭐ 1.4K · 💤) - higher is a pytorch library allowing users to obtain higher.. Apache-2 +
Higher (🥉19 · ⭐ 1.4K · 💤) - Higher是一个pytorch库,允许用户在跨训练循环而不是单个训练步骤的损失上获得更高阶的梯度。Apache-2 - [GitHub](https://github.com/facebookresearch/higher) (👨‍💻 9 · 🔀 100 · 📦 160 · 📋 100 - 50% open · ⏱️ 26.10.2021): @@ -10567,7 +10567,7 @@ _Libraries that extend Pytorch with additional capabilities._ git clone https://github.com/geohot/tinygrad ```
-
Tensor Sensor (🥉17 · ⭐ 650) - The goal of this library is to generate more helpful.. MIT +
Tensor Sensor (🥉17 · ⭐ 650) - 该库的目标是为numpy/pytorch矩阵代数表达式生成更有用的异常消息。MIT - [GitHub](https://github.com/parrt/tensor-sensor) (👨‍💻 4 · 🔀 34 · 📦 7 · 📋 23 - 34% open · ⏱️ 07.04.2022): @@ -10579,7 +10579,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install tensor-sensor ```
-
micrograd (🥉16 · ⭐ 2.4K · 💀) - A tiny scalar-valued autograd engine and a neural net library.. MIT +
micrograd (🥉16 · ⭐ 2.4K · 💀) - 一个微型的标量值autograd引擎和一个神经网络库。MIT - [GitHub](https://github.com/karpathy/micrograd) (👨‍💻 2 · 🔀 210 · 📦 7 · 📋 5 - 40% open · ⏱️ 18.04.2020): @@ -10591,7 +10591,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install micrograd ```
-
Lambda Networks (🥉16 · ⭐ 1.5K · 💀) - Implementation of LambdaNetworks, a new approach to.. MIT +
Lambda Networks (🥉16 · ⭐ 1.5K · 💀) - LambdaNetworks的实现。MIT - [GitHub](https://github.com/lucidrains/lambda-networks) (👨‍💻 3 · 🔀 160 · 📦 6 · 📋 28 - 46% open · ⏱️ 18.11.2020): @@ -10603,7 +10603,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install lambda-networks ```
-
Tez (🥉16 · ⭐ 1.1K) - Tez is a super-simple and lightweight Trainer for PyTorch. It.. Apache-2 +
Tez (🥉16 · ⭐ 1.1K) - Tez是用于PyTorch的超级简单且轻巧的Trainer。Apache-2 - [GitHub](https://github.com/abhishekkrthakur/tez) (👨‍💻 2 · 🔀 140 · 📦 33 · 📋 37 - 54% open · ⏱️ 10.08.2022): @@ -10615,7 +10615,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install tez ```
-
torchsde (🥉16 · ⭐ 1K · 💀) - Differentiable SDE solvers with GPU support and efficient.. Apache-2 +
torchsde (🥉16 · ⭐ 1K · 💀) - 具有GPU支持且高效的可微分SDE求解器。Apache-2 - [GitHub](https://github.com/google-research/torchsde) (👨‍💻 5 · 🔀 110 · 📦 19 · 📋 50 - 18% open · ⏱️ 26.07.2021): @@ -10623,7 +10623,7 @@ _Libraries that extend Pytorch with additional capabilities._ git clone https://github.com/google-research/torchsde ```
-
Pywick (🥉14 · ⭐ 370 · 💤) - High-level batteries-included neural network training.. ❗Unlicensed +
Pywick (🥉14 · ⭐ 370 · 💤) - 更高层次的pytorch神经网络训练库。❗Unlicensed - [GitHub](https://github.com/achaiah/pywick) (👨‍💻 4 · 🔀 39 · 📦 7 · 📋 14 - 7% open · ⏱️ 22.10.2021): @@ -10635,7 +10635,7 @@ _Libraries that extend Pytorch with additional capabilities._ pip install pywick ```
-
Torch-Struct (🥉13 · ⭐ 1K · 💤) - Fast, general, and tested differentiable structured.. MIT +
Torch-Struct (🥉13 · ⭐ 1K · 💤) - 快速,通用和经过测试的微分结构化预测。MIT - [GitHub](https://github.com/harvardnlp/pytorch-struct) (👨‍💻 16 · 🔀 83 · 📋 54 - 44% open · ⏱️ 30.01.2022): @@ -10645,19 +10645,19 @@ _Libraries that extend Pytorch with additional capabilities._

-## Database Clients +## 数据库客户端 -Back to top +Back to top -_Libraries for connecting to, operating, and querying databases._ +_用于连接,操作和查询数据库的库。_ 🔗 Python DB Clients ( ⭐ 7 · 💤) - Collection of database clients for python.
-## Chinese NLP +## 中文自然语言处理 -Back to top +Back to top
jieba (🥇32 · ⭐ 29K · 💀) - Chinese Words Segementation Utilities. MIT @@ -10691,9 +10691,9 @@ _Libraries for connecting to, operating, and querying databases._ ## Others -Back to top +Back to top -
scipy (🥇38 · ⭐ 10K) - Ecosystem of open-source software for mathematics, science, and engineering. BSD-3 +
scipy (🥇38 · ⭐ 10K) - 用于数学,科学和工程的开源软件生态系统。BSD-3 - [GitHub](https://github.com/scipy/scipy) (👨‍💻 1.3K · 🔀 4.3K · 📥 350K · 📦 560K · 📋 8.4K - 16% open · ⏱️ 25.08.2022): @@ -10709,7 +10709,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge scipy ```
-
SymPy (🥇35 · ⭐ 9.5K) - A computer algebra system written in pure Python. ❗Unlicensed +
SymPy (🥇35 · ⭐ 9.5K) - 用纯Python编写的计算机代数系统。❗Unlicensed - [GitHub](https://github.com/sympy/sympy) (👨‍💻 1.2K · 🔀 3.6K · 📥 460K · 📦 45K · 📋 12K - 32% open · ⏱️ 26.08.2022): @@ -10725,7 +10725,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge sympy ```
-
PyOD (🥇31 · ⭐ 6.1K) - (JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly.. BSD-2 +
PyOD (🥇31 · ⭐ 6.1K) - (JMLR'19)用于可扩展离群值检测的Python工具箱。BSD-2 - [GitHub](https://github.com/yzhao062/pyod) (👨‍💻 41 · 🔀 1.1K · 📦 1.5K · 📋 260 - 47% open · ⏱️ 29.07.2022): @@ -10737,7 +10737,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install pyod ```
-
Streamlit (🥇30 · ⭐ 20K · 📈) - Streamlit The fastest way to build data apps in Python. Apache-2 +
Streamlit (🥇30 · ⭐ 20K · 📈) - Streamlit用Python构建数据应用程序的最快方法。Apache-2 - [GitHub](https://github.com/streamlit/streamlit) (👨‍💻 150 · 🔀 1.8K · 📦 380 · 📋 2.6K - 23% open · ⏱️ 25.08.2022): @@ -10749,7 +10749,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install streamlit ```
-
Gradio (🥇30 · ⭐ 8.5K) - Wrap UIs around any model, share with anyone. Apache-2 +
Gradio (🥇30 · ⭐ 8.5K) - 对任何模型做UI封装并与他人共享。Apache-2 - [GitHub](https://github.com/gradio-app/gradio) (👨‍💻 92 · 🔀 530 · 📦 1.1K · 📋 1K - 18% open · ⏱️ 25.08.2022): @@ -10761,7 +10761,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install gradio ```
-
Autograd (🥈29 · ⭐ 5.9K) - Efficiently computes derivatives of numpy code. MIT +
Autograd (🥈29 · ⭐ 5.9K) - 高效地计算导数的numpy代码。MIT - [GitHub](https://github.com/HIPS/autograd) (👨‍💻 52 · 🔀 800 · 📦 3.8K · 📋 370 - 39% open · ⏱️ 15.06.2022): @@ -10777,7 +10777,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge autograd ```
-
Datasette (🥈28 · ⭐ 6.4K) - An open source multi-tool for exploring and publishing data. Apache-2 +
Datasette (🥈28 · ⭐ 6.4K) - 用于探索和发布数据的开源多功能工具。Apache-2 - [GitHub](https://github.com/simonw/datasette) (👨‍💻 67 · 🔀 410 · 📥 39 · 📦 730 · 📋 1.4K - 27% open · ⏱️ 24.08.2022): @@ -10789,7 +10789,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install datasette ```
-
DeepChem (🥈28 · ⭐ 3.8K) - Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry,.. MIT +
DeepChem (🥈28 · ⭐ 3.8K) - 在药物发现,量子化学,材料科学和生物学方面普及深度学习。MIT - [GitHub](https://github.com/deepchem/deepchem) (👨‍💻 200 · 🔀 1.3K · 📦 120 · 📋 1.4K - 29% open · ⏱️ 26.08.2022): @@ -10801,7 +10801,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install deepchem ```
-
hdbscan (🥈28 · ⭐ 2.2K) - A high performance implementation of HDBSCAN clustering. BSD-3 +
hdbscan (🥈28 · ⭐ 2.2K) - HDBSCAN群集的高性能实现。BSD-3 - [GitHub](https://github.com/scikit-learn-contrib/hdbscan) (👨‍💻 80 · 🔀 390 · 📦 1.5K · 📋 440 - 63% open · ⏱️ 23.08.2022): @@ -10817,7 +10817,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge hdbscan ```
-
agate (🥈28 · ⭐ 1.1K · 💀) - A Python data analysis library that is optimized for humans instead of.. MIT +
agate (🥈28 · ⭐ 1.1K · 💀) - 为人而不是为机器优化的Python数据分析库。MIT - [GitHub](https://github.com/wireservice/agate) (👨‍💻 49 · 🔀 140 · 📦 1.1K · 📋 640 - 1% open · ⏱️ 15.07.2021): @@ -10833,7 +10833,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge agate ```
-
Cython BLIS (🥈28 · ⭐ 190) - Fast matrix-multiplication as a self-contained Python.. ❗Unlicensed +
Cython BLIS (🥈28 · ⭐ 190) - 快速矩阵乘法库。❗Unlicensed - [GitHub](https://github.com/explosion/cython-blis) (👨‍💻 12 · 🔀 34 · 📦 20K · 📋 28 - 17% open · ⏱️ 04.08.2022): @@ -10849,7 +10849,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge cython-blis ```
-
PaddleHub (🥈27 · ⭐ 8.3K) - Awesome pre-trained models toolkit based on.. Apache-2 +
PaddleHub (🥈27 · ⭐ 8.3K) - 基于PaddlePaddle的出色的预训练模型工具包。Apache-2 - [GitHub](https://github.com/PaddlePaddle/PaddleHub) (👨‍💻 62 · 🔀 1.7K · 📥 580 · 📦 890 · 📋 1.1K - 41% open · ⏱️ 19.08.2022): @@ -10861,7 +10861,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install paddlehub ```
-
carla (🥈27 · ⭐ 8.2K · 💤) - Open-source simulator for autonomous driving research. ❗Unlicensed +
carla (🥈27 · ⭐ 8.2K · 💤) - 用于自动驾驶研究的开源模拟器。❗Unlicensed - [GitHub](https://github.com/carla-simulator/carla) (👨‍💻 140 · 🔀 2.4K · 📦 230 · 📋 4K - 16% open · ⏱️ 19.11.2021): @@ -10873,7 +10873,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install carla ```
-
Pythran (🥈27 · ⭐ 1.8K) - Ahead of Time compiler for numeric kernels. BSD-3 +
Pythran (🥈27 · ⭐ 1.8K) - 用于数字内核的时间编译器。BSD-3 - [GitHub](https://github.com/serge-sans-paille/pythran) (👨‍💻 66 · 🔀 170 · 📦 220 · 📋 760 - 14% open · ⏱️ 19.07.2022): @@ -10889,7 +10889,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge pythran ```
-
pyjanitor (🥈27 · ⭐ 960) - Clean APIs for data cleaning. Python implementation of R package Janitor. MIT +
pyjanitor (🥈27 · ⭐ 960) - 用于数据清理的API。MIT - [GitHub](https://github.com/pyjanitor-devs/pyjanitor) (👨‍💻 100 · 🔀 150 · 📦 220 · 📋 490 - 20% open · ⏱️ 24.08.2022): @@ -10905,7 +10905,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge pyjanitor ```
-
metric-learn (🥉26 · ⭐ 1.3K) - Metric learning algorithms in Python. MIT +
metric-learn (🥉26 · ⭐ 1.3K) - Python中的度量学习算法。MIT - [GitHub](https://github.com/scikit-learn-contrib/metric-learn) (👨‍💻 22 · 🔀 220 · 📦 230 · 📋 160 - 26% open · ⏱️ 21.06.2022): @@ -10917,7 +10917,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install metric-learn ```
-
Trax (🥉25 · ⭐ 7.1K) - Trax Deep Learning with Clear Code and Speed. Apache-2 +
Trax (🥉25 · ⭐ 7.1K) - 借助清晰的代码和速度来进行深度学习。Apache-2 - [GitHub](https://github.com/google/trax) (👨‍💻 78 · 🔀 720 · 📦 75 · 📋 210 - 41% open · ⏱️ 08.08.2022): @@ -10929,7 +10929,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install trax ```
-
TabPy (🥉25 · ⭐ 1.3K) - Execute Python code on the fly and display results in Tableau visualizations:. MIT +
TabPy (🥉25 · ⭐ 1.3K) - 快速执行Python代码,并在Tableau可视化文件中显示结果。MIT - [GitHub](https://github.com/tableau/TabPy) (👨‍💻 47 · 🔀 480 · 📦 93 · 📋 290 - 1% open · ⏱️ 10.06.2022): @@ -10941,7 +10941,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install tabpy ```
-
causalml (🥉24 · ⭐ 3.2K) - Uplift modeling and causal inference with machine learning.. ❗Unlicensed +
causalml (🥉24 · ⭐ 3.2K) - 利用机器学习提升建模和因果推理。❗Unlicensed - [GitHub](https://github.com/uber/causalml) (👨‍💻 44 · 🔀 520 · 📦 52 · 📋 280 - 21% open · ⏱️ 22.08.2022): @@ -10953,7 +10953,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install causalml ```
-
pyclustering (🥉24 · ⭐ 990 · 💀) - pyclustring is a Python, C++ data mining library. BSD-3 +
pyclustering (🥉24 · ⭐ 990 · 💀) - pyclustring是Python,C++数据挖掘库。BSD-3 - [GitHub](https://github.com/annoviko/pyclustering) (👨‍💻 26 · 🔀 220 · 📥 410 · 📦 350 · 📋 650 - 9% open · ⏱️ 12.02.2021): @@ -10969,7 +10969,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge pyclustering ```
-
PySwarms (🥉23 · ⭐ 960) - A research toolkit for particle swarm optimization in Python. MIT +
PySwarms (🥉23 · ⭐ 960) - 用于Python中粒子群优化的研究工具包。MIT - [GitHub](https://github.com/ljvmiranda921/pyswarms) (👨‍💻 44 · 🔀 300 · 📦 180 · 📋 210 - 3% open · ⏱️ 03.07.2022): @@ -10981,7 +10981,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install pyswarms ```
-
gplearn (🥉22 · ⭐ 1.2K) - Genetic Programming in Python, with a scikit-learn inspired API. BSD-3 +
gplearn (🥉22 · ⭐ 1.2K) - 使用scikit-learn启发式API进行Python遗传编程。BSD-3 - [GitHub](https://github.com/trevorstephens/gplearn) (👨‍💻 10 · 🔀 200 · 📦 280 · 📋 190 - 7% open · ⏱️ 04.08.2022): @@ -10993,7 +10993,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install gplearn ```
-
pyopencl (🥉22 · ⭐ 910) - OpenCL integration for Python, plus shiny features. ❗Unlicensed +
pyopencl (🥉22 · ⭐ 910) - 适用于Python的OpenCL集成。❗Unlicensed - [GitHub](https://github.com/inducer/pyopencl) (👨‍💻 92 · 🔀 220 · 📦 800 · 📋 300 - 20% open · ⏱️ 23.08.2022): @@ -11009,7 +11009,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge pyopencl ```
-
Prince (🥉22 · ⭐ 850 · 💤) - Python factor analysis library (PCA, CA, MCA, MFA, FAMD). MIT +
Prince (🥉22 · ⭐ 850 · 💤) - Python因子分析库(PCA,CA,MCA,MFA,FAMD)。MIT - [GitHub](https://github.com/MaxHalford/prince) (👨‍💻 12 · 🔀 150 · 📦 240 · 📋 110 - 35% open · ⏱️ 28.12.2021): @@ -11021,7 +11021,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install prince ```
-
findspark (🥉22 · ⭐ 440) - Find pyspark to make it importable. BSD-3 +
findspark (🥉22 · ⭐ 440) - 查找pyspark并导入的工具库。BSD-3 - [GitHub](https://github.com/minrk/findspark) (👨‍💻 15 · 🔀 68 · 📦 2.7K · 📋 22 - 50% open · ⏱️ 11.02.2022): @@ -11037,7 +11037,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge findspark ```
-
River (🥉20 · ⭐ 3.6K) - Online machine learning in Python. BSD-3 +
River (🥉20 · ⭐ 3.6K) - Python中的在线机器学习。BSD-3 - [GitHub](https://github.com/online-ml/river) (👨‍💻 81 · 🔀 380 · 📦 160 · 📋 370 - 1% open · ⏱️ 24.08.2022): @@ -11045,7 +11045,7 @@ _Libraries for connecting to, operating, and querying databases._ git clone https://github.com/online-ml/river ```
-
BioPandas (🥉20 · ⭐ 500) - Working with molecular structures in pandas DataFrames. BSD-3 +
BioPandas (🥉20 · ⭐ 500) - 在pandas DataFrames中处理分子结构。BSD-3 - [GitHub](https://github.com/rasbt/biopandas) (👨‍💻 10 · 🔀 100 · 📦 120 · 📋 47 - 42% open · ⏱️ 06.08.2022): @@ -11061,7 +11061,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge biopandas ```
-
StreamAlert (🥉19 · ⭐ 2.7K) - StreamAlert is a serverless, realtime data analysis framework.. Apache-2 +
StreamAlert (🥉19 · ⭐ 2.7K) - StreamAlert是无服务器的实时数据分析框架。Apache-2 - [GitHub](https://github.com/airbnb/streamalert) (👨‍💻 33 · 🔀 320 · 📋 340 - 24% open · ⏱️ 20.07.2022): @@ -11069,7 +11069,7 @@ _Libraries for connecting to, operating, and querying databases._ git clone https://github.com/airbnb/streamalert ```
-
SUOD (🥉19 · ⭐ 330) - (MLSys' 21) An Acceleration System for Large-scare Unsupervised.. BSD-2 +
SUOD (🥉19 · ⭐ 330) - (MLSys' 21)大型无人驾驶加速系统。BSD-2 - [GitHub](https://github.com/yzhao062/SUOD) (👨‍💻 2 · 🔀 41 · 📦 430 · 📋 9 - 66% open · ⏱️ 07.07.2022): @@ -11081,7 +11081,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install suod ```
-
impyute (🥉19 · ⭐ 320 · 💤) - Data imputations library to preprocess datasets with missing data. MIT +
impyute (🥉19 · ⭐ 320 · 💤) - 数据插补库可对缺少数据的数据集进行预处理。MIT - [GitHub](https://github.com/eltonlaw/impyute) (👨‍💻 11 · 🔀 46 · 📦 140 · 📋 64 - 42% open · ⏱️ 06.11.2021): @@ -11093,7 +11093,7 @@ _Libraries for connecting to, operating, and querying databases._ pip install impyute ```
-
AstroML (🥉17 · ⭐ 840) - Machine learning, statistics, and data mining for astronomy and.. BSD-2 +
AstroML (🥉17 · ⭐ 840) - 天文学和天体物理学的机器学习,统计和数据挖掘.BSD-2 - [GitHub](https://github.com/astroML/astroML) (👨‍💻 30 · 🔀 270 · 📋 150 - 37% open · ⏱️ 17.08.2022): @@ -11109,7 +11109,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge astroml ```
-
Feature Engine (🥉16 · ⭐ 22) - Feature engineering package with sklearn like functionality. BSD-3 +
Feature Engine (🥉16 · ⭐ 22) - 具有sklearn类功能的功能工程包。BSD-3 - [GitHub](https://github.com/solegalli/feature_engine) (👨‍💻 36 · 🔀 8 · ⏱️ 05.07.2022): @@ -11125,7 +11125,7 @@ _Libraries for connecting to, operating, and querying databases._ conda install -c conda-forge feature_engine ```
-
cleanlab (🥉13 · ⭐ 49 · 🐣) - The standard package for machine learning with noisy labels and.. ❗️AGPL-3.0 +
cleanlab (🥉13 · ⭐ 49 · 🐣) - 机器学习的标准软件包。❗️AGPL-3.0 - [GitHub](https://github.com/cgnorthcutt/cleanlab) (👨‍💻 10 · 🔀 9 · ⏱️ 21.08.2022):