Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: update gitignore #12

Closed
wants to merge 2 commits into from
Closed

Conversation

fede-bello
Copy link
Collaborator

@fede-bello fede-bello commented Oct 23, 2024

We were getting an error when preprocessing 1 dimensional labels vectors.
I tried fixing this directly but then I started having issues with the MTAD_GAT training, since it expects the same shape in the data and in the labels

For now, I tackled this broadcasting the labels to meet the shape of the data. Eventually we can think of something more intelligent, but we will need to update MTAD_GAT so I believe that we are good for now

@fede-bello fede-bello force-pushed the feat/mtad-gat-for-swat branch 2 times, most recently from d66395f to 201be9c Compare October 23, 2024 21:32
@fede-bello fede-bello force-pushed the feat/mtad-gat-for-swat branch from 201be9c to 5fd1e2e Compare October 23, 2024 22:15
@fede-bello fede-bello requested a review from gonzachiar October 23, 2024 22:16
@fede-bello fede-bello marked this pull request as ready for review October 23, 2024 22:17
@gonzachiar
Copy link
Collaborator

Which error are you getting? I don't like this fix because it will affect the model's performance, I prefer to fix the model.

@fede-bello
Copy link
Collaborator Author

This is the error:


(gragod-py3.10)  ✘  ~/personal/GraGOD   feat/mtad-gat-for-swat ±  python models/mtad_gat/train.py
Seed set to 42
Data cleaned!
Data cleaned!
Data cleaned!
/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/utilities/parsing.py:208: Attribute 'forecast_criterion' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['forecast_criterion'])`.
/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/utilities/parsing.py:208: Attribute 'recon_criterion' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['recon_criterion'])`.
GPU available: True (mps), used: True
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/callbacks/model_checkpoint.py:654: Checkpoint directory /Users/fbello/personal/GraGOD/output exists and is not empty.

  | Name               | Type     | Params | Mode
--------------------------------------------------------
0 | model              | MTAD_GAT | 1.3 M  | train
1 | forecast_criterion | MSELoss  | 0      | train
2 | recon_criterion    | MSELoss  | 0      | train
--------------------------------------------------------
1.3 M     Trainable params
0         Non-trainable params
1.3 M     Total params
5.138     Total estimated model params size (MB)
29        Modules in train mode
0         Modules in eval mode
Sanity Checking: |                                                                                                                                                                              | 0/? [00:00<?, ?it/s]/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:424: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=10` in the `DataLoader` to improve performance.
Sanity Checking DataLoader 0:   0%|                                                                                                                                                             | 0/2 [00:00<?, ?it/s]Traceback (most recent call last):
  File "/Users/fbello/personal/GraGOD/models/mtad_gat/train.py", line 114, in <module>
    main(
  File "/Users/fbello/personal/GraGOD/models/mtad_gat/train.py", line 102, in main
    trainer.fit(train_loader, val_loader, args_summary=args_summary)
  File "/Users/fbello/personal/GraGOD/models/mtad_gat/trainer_pl.py", line 261, in fit
    trainer.fit(self.lightning_module, train_loader, val_loader)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 538, in fit
    call._call_and_handle_interrupt(
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 47, in _call_and_handle_interrupt
    return trainer_fn(*args, **kwargs)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 574, in _fit_impl
    self._run(model, ckpt_path=ckpt_path)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 981, in _run
    results = self._run_stage()
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1023, in _run_stage
    self._run_sanity_check()
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1052, in _run_sanity_check
    val_loop.run()
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/utilities.py", line 178, in _decorator
    return loop_run(self, *args, **kwargs)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/evaluation_loop.py", line 135, in run
    self._evaluation_step(batch, batch_idx, dataloader_idx, dataloader_iter)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/loops/evaluation_loop.py", line 396, in _evaluation_step
    output = call._call_strategy_hook(trainer, hook_name, *step_args)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 319, in _call_strategy_hook
    output = fn(*args, **kwargs)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py", line 411, in validation_step
    return self.lightning_module.validation_step(*args, **kwargs)
  File "/Users/fbello/personal/GraGOD/models/mtad_gat/trainer_pl.py", line 138, in validation_step
    loss, recon_loss, forecast_loss = self.shared_step(batch, batch_idx)
  File "/Users/fbello/personal/GraGOD/models/mtad_gat/trainer_pl.py", line 113, in shared_step
    preds, recons = self(x)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
    return forward_call(*args, **kwargs)
  File "/Users/fbello/personal/GraGOD/models/mtad_gat/trainer_pl.py", line 77, in forward
    return self.model(x)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
    return forward_call(*args, **kwargs)
  File "/Users/fbello/personal/GraGOD/models/mtad_gat/model.py", line 86, in forward
    x = self.conv(x)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
    return forward_call(*args, **kwargs)
  File "/Users/fbello/personal/GraGOD/models/mtad_gat/modules.py", line 33, in forward
    x = self.relu(self.conv(x))
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
    return forward_call(*args, **kwargs)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py", line 375, in forward
    return self._conv_forward(input, self.weight, self.bias)
  File "/Users/fbello/personal/GraGOD/.venv/lib/python3.10/site-packages/torch/nn/modules/conv.py", line 370, in _conv_forward
    return F.conv1d(
RuntimeError: Given groups=1, weight of size [51, 51, 7], expected input[264, 1, 10] to have 51 channels, but got 1 channels instead
(gragod-py3.10)  ✘  ~/personal/GraGOD   feat/mtad-gat-for-swat ± 

However, I don't think it will be that easy to change the model, right? Isn't it thought to have one label per column?

@gonzachiar
Copy link
Collaborator

Labels are not used during training. This happens because the load_swat_training_data is returning the arrays in the wrong order. I'll fix it in another branch.

@gonzachiar
Copy link
Collaborator

@fede-bello fede-bello closed this Oct 23, 2024
@gonzachiar gonzachiar deleted the feat/mtad-gat-for-swat branch November 9, 2024 20:22
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants