-
Notifications
You must be signed in to change notification settings - Fork 225
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
clib.converison._to_numpy: Add tests for numpy arrays of numpy numeric dtypes #3583
Changes from 7 commits
127d8ca
6ae1ddb
a9635b5
6f966db
9fd655b
f9bf19c
8bc2f56
42a0951
0d102a2
933bc62
4edfef0
b8f6d12
fddb53a
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
""" | ||
Tests for the _to_numpy function in the clib.conversion module. | ||
""" | ||
|
||
import numpy as np | ||
import numpy.testing as npt | ||
import pandas as pd | ||
import pytest | ||
from pygmt.clib.conversion import _to_numpy | ||
|
||
|
||
def _check_result(result, expected_dtype): | ||
""" | ||
A helper function to check if the result of the _to_numpy function is a C-contiguous | ||
NumPy array with the expected dtype. | ||
""" | ||
assert isinstance(result, np.ndarray) | ||
assert result.flags.c_contiguous | ||
assert result.dtype.type == expected_dtype | ||
|
||
|
||
######################################################################################## | ||
# Test the _to_numpy function with Python built-in types. | ||
######################################################################################## | ||
@pytest.mark.parametrize( | ||
("data", "expected_dtype"), | ||
[ | ||
pytest.param([1, 2, 3], np.int64, id="int"), | ||
pytest.param([1.0, 2.0, 3.0], np.float64, id="float"), | ||
], | ||
) | ||
def test_to_numpy_python_types_numeric(data, expected_dtype): | ||
""" | ||
Test the _to_numpy function with Python built-in numeric types. | ||
""" | ||
result = _to_numpy(data) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, data) | ||
|
||
|
||
######################################################################################## | ||
# Test the _to_numpy function with NumPy arrays. | ||
# | ||
# There are 24 fundamental dtypes in NumPy. Not all of them are supported by PyGMT. | ||
# | ||
# - Numeric dtypes: | ||
# - int8, int16, int32, int64, longlong | ||
# - uint8, uint16, uint32, uint64, ulonglong | ||
# - float16, float32, float64, longdouble | ||
# - complex64, complex128, clongdouble | ||
# - bool | ||
# - datetime64, timedelta64 | ||
# - str_ | ||
# - bytes_ | ||
# - object_ | ||
# - void | ||
# | ||
# Reference: https://numpy.org/doc/2.1/reference/arrays.scalars.html | ||
######################################################################################## | ||
@pytest.mark.parametrize( | ||
("dtype", "expected_dtype"), | ||
[ | ||
pytest.param(np.int8, np.int8, id="int8"), | ||
pytest.param(np.int16, np.int16, id="int16"), | ||
pytest.param(np.int32, np.int32, id="int32"), | ||
pytest.param(np.int64, np.int64, id="int64"), | ||
pytest.param(np.longlong, np.longlong, id="longlong"), | ||
pytest.param(np.uint8, np.uint8, id="uint8"), | ||
pytest.param(np.uint16, np.uint16, id="uint16"), | ||
pytest.param(np.uint32, np.uint32, id="uint32"), | ||
pytest.param(np.uint64, np.uint64, id="uint64"), | ||
pytest.param(np.ulonglong, np.ulonglong, id="ulonglong"), | ||
pytest.param(np.float16, np.float16, id="float16"), | ||
pytest.param(np.float32, np.float32, id="float32"), | ||
pytest.param(np.float64, np.float64, id="float64"), | ||
pytest.param(np.longdouble, np.longdouble, id="longdouble"), | ||
pytest.param(np.complex64, np.complex64, id="complex64"), | ||
pytest.param(np.complex128, np.complex128, id="complex128"), | ||
pytest.param(np.clongdouble, np.clongdouble, id="clongdouble"), | ||
], | ||
) | ||
seisman marked this conversation as resolved.
Show resolved
Hide resolved
|
||
def test_to_numpy_ndarray_numpy_dtypes_numeric(dtype, expected_dtype): | ||
""" | ||
Test the _to_numpy function with NumPy arrays of NumPy numeric dtypes. | ||
|
||
Test both 1-D and 2-D arrays. | ||
seisman marked this conversation as resolved.
Show resolved
Hide resolved
|
||
""" | ||
# 1-D array | ||
array = np.array([1, 2, 3], dtype=dtype) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This test feels a bit redundant, given that we are converting numpy C-order to numpy C-order which will obviously work. Should we test with There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is a good point. Instead of testing |
||
result = _to_numpy(array) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, array, strict=True) | ||
|
||
# 2-D array | ||
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=dtype) | ||
result = _to_numpy(array) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, array, strict=True) | ||
|
||
|
||
######################################################################################## | ||
# Test the _to_numpy function with pandas.Series. | ||
# | ||
# In pandas, dtype can be specified by | ||
# | ||
# 1. NumPy dtypes (see above) | ||
# 2. pandas dtypes | ||
# 3. PyArrow dtypes | ||
# | ||
# pandas provides following dtypes: | ||
# | ||
# - Numeric dtypes: | ||
# - Int8, Int16, Int32, Int64 | ||
# - UInt8, UInt16, UInt32, UInt64 | ||
# - Float32, Float64 | ||
# - DatetimeTZDtype | ||
# - PeriodDtype | ||
# - IntervalDtype | ||
# - StringDtype | ||
# - CategoricalDtype | ||
# - SparseDtype | ||
# - BooleanDtype | ||
# - ArrowDtype: a special dtype used to store data in the PyArrow format. | ||
# | ||
# References: | ||
# 1. https://pandas.pydata.org/docs/reference/arrays.html | ||
# 2. https://pandas.pydata.org/docs/user_guide/basics.html#basics-dtypes | ||
# 3. https://pandas.pydata.org/docs/user_guide/pyarrow.html | ||
######################################################################################## | ||
@pytest.mark.parametrize( | ||
("dtype", "expected_dtype"), | ||
[ | ||
pytest.param(np.int8, np.int8, id="int8"), | ||
pytest.param(np.int16, np.int16, id="int16"), | ||
pytest.param(np.int32, np.int32, id="int32"), | ||
pytest.param(np.int64, np.int64, id="int64"), | ||
pytest.param(np.longlong, np.longlong, id="longlong"), | ||
pytest.param(np.uint8, np.uint8, id="uint8"), | ||
pytest.param(np.uint16, np.uint16, id="uint16"), | ||
pytest.param(np.uint32, np.uint32, id="uint32"), | ||
pytest.param(np.uint64, np.uint64, id="uint64"), | ||
pytest.param(np.ulonglong, np.ulonglong, id="ulonglong"), | ||
pytest.param(np.float16, np.float16, id="float16"), | ||
pytest.param(np.float32, np.float32, id="float32"), | ||
pytest.param(np.float64, np.float64, id="float64"), | ||
pytest.param(np.longdouble, np.longdouble, id="longdouble"), | ||
pytest.param(np.complex64, np.complex64, id="complex64"), | ||
pytest.param(np.complex128, np.complex128, id="complex128"), | ||
pytest.param(np.clongdouble, np.clongdouble, id="clongdouble"), | ||
], | ||
) | ||
seisman marked this conversation as resolved.
Show resolved
Hide resolved
|
||
def test_to_numpy_pandas_series_numpy_dtypes_numeric(dtype, expected_dtype): | ||
""" | ||
Test the _to_numpy function with pandas.Series of NumPy numeric dtypes. | ||
""" | ||
series = pd.Series([1, 2, 3], dtype=dtype) | ||
result = _to_numpy(series) | ||
_check_result(result, expected_dtype) | ||
npt.assert_array_equal(result, series) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Not sure if it's necessary, but Python does have built-in complex number types (https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex)
The Python standard library also includes fractions.Fraction and decimal.Decimal, but I don't know if anyone really uses those.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
They can't be converted to a numpy array, so PyGMT can't support them anyway.