Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

clib.converison._to_numpy: Add tests for numpy arrays of numpy numeric dtypes #3583

Merged
merged 13 commits into from
Nov 7, 2024
159 changes: 159 additions & 0 deletions pygmt/tests/test_clib_to_numpy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
"""
Tests for the _to_numpy function in the clib.conversion module.
"""

import numpy as np
import numpy.testing as npt
import pandas as pd
import pytest
from pygmt.clib.conversion import _to_numpy


def _check_result(result, expected_dtype):
"""
A helper function to check if the result of the _to_numpy function is a C-contiguous
NumPy array with the expected dtype.
"""
assert isinstance(result, np.ndarray)
assert result.flags.c_contiguous
assert result.dtype.type == expected_dtype


########################################################################################
# Test the _to_numpy function with Python built-in types.
########################################################################################
@pytest.mark.parametrize(
("data", "expected_dtype"),
[
pytest.param([1, 2, 3], np.int64, id="int"),
pytest.param([1.0, 2.0, 3.0], np.float64, id="float"),
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not sure if it's necessary, but Python does have built-in complex number types (https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex)

Suggested change
pytest.param([1.0, 2.0, 3.0], np.float64, id="float"),
pytest.param([1.0, 2.0, 3.0], np.float64, id="float"),
pytest.param(
[complex(+1), complex(-2j), complex("-Infinity+NaNj")],
np.complex128,
id="complex",
),

The Python standard library also includes fractions.Fraction and decimal.Decimal, but I don't know if anyone really uses those.

Copy link
Member Author

@seisman seisman Nov 6, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The Python standard library also includes fractions.Fraction and decimal.Decimal, but I don't know if anyone really uses those.

They can't be converted to a numpy array, so PyGMT can't support them anyway.

],
)
def test_to_numpy_python_types_numeric(data, expected_dtype):
"""
Test the _to_numpy function with Python built-in numeric types.
"""
result = _to_numpy(data)
_check_result(result, expected_dtype)
npt.assert_array_equal(result, data)


########################################################################################
# Test the _to_numpy function with NumPy arrays.
#
# There are 24 fundamental dtypes in NumPy. Not all of them are supported by PyGMT.
#
# - Numeric dtypes:
# - int8, int16, int32, int64, longlong
# - uint8, uint16, uint32, uint64, ulonglong
# - float16, float32, float64, longdouble
# - complex64, complex128, clongdouble
# - bool
# - datetime64, timedelta64
# - str_
# - bytes_
# - object_
# - void
#
# Reference: https://numpy.org/doc/2.1/reference/arrays.scalars.html
########################################################################################
@pytest.mark.parametrize(
("dtype", "expected_dtype"),
[
pytest.param(np.int8, np.int8, id="int8"),
pytest.param(np.int16, np.int16, id="int16"),
pytest.param(np.int32, np.int32, id="int32"),
pytest.param(np.int64, np.int64, id="int64"),
pytest.param(np.longlong, np.longlong, id="longlong"),
pytest.param(np.uint8, np.uint8, id="uint8"),
pytest.param(np.uint16, np.uint16, id="uint16"),
pytest.param(np.uint32, np.uint32, id="uint32"),
pytest.param(np.uint64, np.uint64, id="uint64"),
pytest.param(np.ulonglong, np.ulonglong, id="ulonglong"),
pytest.param(np.float16, np.float16, id="float16"),
pytest.param(np.float32, np.float32, id="float32"),
pytest.param(np.float64, np.float64, id="float64"),
pytest.param(np.longdouble, np.longdouble, id="longdouble"),
pytest.param(np.complex64, np.complex64, id="complex64"),
pytest.param(np.complex128, np.complex128, id="complex128"),
pytest.param(np.clongdouble, np.clongdouble, id="clongdouble"),
],
)
seisman marked this conversation as resolved.
Show resolved Hide resolved
def test_to_numpy_ndarray_numpy_dtypes_numeric(dtype, expected_dtype):
"""
Test the _to_numpy function with NumPy arrays of NumPy numeric dtypes.

Test both 1-D and 2-D arrays.
seisman marked this conversation as resolved.
Show resolved Hide resolved
"""
# 1-D array
array = np.array([1, 2, 3], dtype=dtype)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This test feels a bit redundant, given that we are converting numpy C-order to numpy C-order which will obviously work. Should we test with order="F" instead?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is a good point. Instead of testing order="F" which is usually less used, I've used array slice which is not C-contiguous as input (see 933bc62).

result = _to_numpy(array)
_check_result(result, expected_dtype)
npt.assert_array_equal(result, array, strict=True)

# 2-D array
array = np.array([[1, 2, 3], [4, 5, 6]], dtype=dtype)
result = _to_numpy(array)
_check_result(result, expected_dtype)
npt.assert_array_equal(result, array, strict=True)


########################################################################################
# Test the _to_numpy function with pandas.Series.
#
# In pandas, dtype can be specified by
#
# 1. NumPy dtypes (see above)
# 2. pandas dtypes
# 3. PyArrow dtypes
#
# pandas provides following dtypes:
#
# - Numeric dtypes:
# - Int8, Int16, Int32, Int64
# - UInt8, UInt16, UInt32, UInt64
# - Float32, Float64
# - DatetimeTZDtype
# - PeriodDtype
# - IntervalDtype
# - StringDtype
# - CategoricalDtype
# - SparseDtype
# - BooleanDtype
# - ArrowDtype: a special dtype used to store data in the PyArrow format.
#
# References:
# 1. https://pandas.pydata.org/docs/reference/arrays.html
# 2. https://pandas.pydata.org/docs/user_guide/basics.html#basics-dtypes
# 3. https://pandas.pydata.org/docs/user_guide/pyarrow.html
########################################################################################
@pytest.mark.parametrize(
("dtype", "expected_dtype"),
[
pytest.param(np.int8, np.int8, id="int8"),
pytest.param(np.int16, np.int16, id="int16"),
pytest.param(np.int32, np.int32, id="int32"),
pytest.param(np.int64, np.int64, id="int64"),
pytest.param(np.longlong, np.longlong, id="longlong"),
pytest.param(np.uint8, np.uint8, id="uint8"),
pytest.param(np.uint16, np.uint16, id="uint16"),
pytest.param(np.uint32, np.uint32, id="uint32"),
pytest.param(np.uint64, np.uint64, id="uint64"),
pytest.param(np.ulonglong, np.ulonglong, id="ulonglong"),
pytest.param(np.float16, np.float16, id="float16"),
pytest.param(np.float32, np.float32, id="float32"),
pytest.param(np.float64, np.float64, id="float64"),
pytest.param(np.longdouble, np.longdouble, id="longdouble"),
pytest.param(np.complex64, np.complex64, id="complex64"),
pytest.param(np.complex128, np.complex128, id="complex128"),
pytest.param(np.clongdouble, np.clongdouble, id="clongdouble"),
],
)
seisman marked this conversation as resolved.
Show resolved Hide resolved
def test_to_numpy_pandas_series_numpy_dtypes_numeric(dtype, expected_dtype):
"""
Test the _to_numpy function with pandas.Series of NumPy numeric dtypes.
"""
series = pd.Series([1, 2, 3], dtype=dtype)
result = _to_numpy(series)
_check_result(result, expected_dtype)
npt.assert_array_equal(result, series)
Loading