EXPERIMENTACIÓN Y COMPARATIVA DE DIFERENTES MODELOS DE REDES NEURONALES ARTIFICIALES PARA EL PROCESAMIENTO DEL LENGUAJE NATURAL
El procesamiento de lenguaje natural ha sido tradicionalmente una tarea compleja y poco trivial a la hora de diseñar algoritmos para su procesamiento. Gracias a la inteligencia artificial, se han conseguido grandes avances en este entorno y se han propuesto cada vez más modelos que hacen frente a los problemas normalmente poco tratables.
Este trabajo propone experimentar y comparar tres modelos de redes neuronales artificiales que han tenido bastante éxito en el procesamiento de lenguaje natural: LSTM (Long Short-Term Memory), MemN2N (modelo propuesto por Facebook) y DNC (modelo propuesto por Google). Para ello se han adaptado estos modelos optimizados a un ámbito concreto con el objetivo de comparar los resultados de cada uno.