Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

2D Conv transpose support #311

Merged
merged 21 commits into from
Feb 6, 2019
Merged
Show file tree
Hide file tree
Changes from 18 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/Flux.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ using Base: tail
using MacroTools, Juno, Requires, Reexport, Statistics, Random
using MacroTools: @forward

export Chain, Dense, RNN, LSTM, GRU, Conv, MaxPool, MeanPool,
export Chain, Dense, RNN, LSTM, GRU, Conv, ConvTranspose, MaxPool, MeanPool,
DepthwiseConv, Dropout, LayerNorm, BatchNorm,
params, mapleaves, cpu, gpu

Expand Down
51 changes: 50 additions & 1 deletion src/layers/conv.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
using NNlib: conv, depthwiseconv
using NNlib: conv, ∇conv_data, depthwiseconv

@generated sub2(::Val{N}) where N = :(Val($(N-2)))

Expand Down Expand Up @@ -57,6 +57,54 @@ end
(a::Conv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))

"""
ConvTranspose(size, in=>out)
ConvTranspose(size, in=>out, relu)

Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
Takes the keyword arguments `pad`, `stride` and `dilation`.
"""
struct ConvTranspose{N,F,A,V}
σ::F
weight::A
bias::V
stride::NTuple{N,Int}
pad::NTuple{N,Int}
dilation::NTuple{N,Int}
end

ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N} =
ConvTranspose(σ, w, b, expand.(sub2(Val(N)), (stride, pad, dilation))...)

ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
ConvTranspose(param(init(k..., reverse(ch)...)), param(zeros(ch[2])), σ,
stride = stride, pad = pad, dilation = dilation)

@treelike ConvTranspose

function (c::ConvTranspose)(x::AbstractArray)
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
σ.(∇conv_data(x, c.weight, stride = c.stride, pad = c.pad, dilation = c.dilation) .+ b)
end

function Base.show(io::IO, l::ConvTranspose)
print(io, "ConvTranspose(", size(l.weight)[1:ndims(l.weight)-2])
print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1))
l.σ == identity || print(io, ", ", l.σ)
print(io, ")")
end

(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
invoke(a, Tuple{AbstractArray}, x)

(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))
"""
DepthwiseConv(size, in)
DepthwiseConv(size, in=>mul)
Expand All @@ -77,6 +125,7 @@ struct DepthwiseConv{N,F,A,V}
bias::V
stride::NTuple{N,Int}
pad::NTuple{N,Int}
dilation::NTuple{N,Int}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This seems like perhaps an unrelated change?

end

DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
Expand Down
16 changes: 13 additions & 3 deletions src/tracker/lib/array.jl
Original file line number Diff line number Diff line change
Expand Up @@ -356,7 +356,7 @@ x::TrackedVector * y::TrackedVector = track(*, x, y)
# NNlib

using NNlib
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, depthwiseconv, maxpool, meanpool
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, ∇conv_data, depthwiseconv, maxpool, meanpool

softmax(xs::TrackedArray) = track(softmax, xs)

Expand All @@ -383,8 +383,18 @@ conv(x::TrackedArray, w::AbstractArray; kw...) = track(conv, x, w; kw...)
@grad conv(x, w; kw...) =
conv(data(x), data(w); kw...),
Δ -> nobacksies(:conv,
(NNlib.∇conv_data(data.((Δ, x, w))...; kw...),
NNlib.∇conv_filter(data.((Δ, x, w))...; kw...)))
(NNlib.∇conv_data(data.((Δ, w))...; size=size(x), kw...),
NNlib.∇conv_filter(data.((Δ, x))...; size=size(w), kw...)))

∇conv_data(x::TrackedArray, w::TrackedArray; kw...) = track(∇conv_data, x, w; kw...)
∇conv_data(x::AbstractArray, w::TrackedArray; kw...) = track(∇conv_data, x, w; kw...)
∇conv_data(x::TrackedArray, w::AbstractArray; kw...) = track(∇conv_data, x, w; kw...)

@grad ∇conv_data(x, w; kw...) =
∇conv_data(data(x), data(w); kw...),
Δ -> nobacksies(:conv,
(NNlib.conv(data.((Δ, w))...; size=size(x), kw...),
NNlib.∇conv_filter(data.((x, Δ))...; size=size(w), kw...)))

maxpool(x::TrackedArray, k; kw...) = track(maxpool, x, k; kw...)

Expand Down
16 changes: 12 additions & 4 deletions test/tracker.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
using Flux
using Flux.Tracker, Test, NNlib
using Flux.Tracker: TrackedReal, gradcheck, grad, checkpoint
using NNlib: conv, depthwiseconv
using NNlib: conv, ∇conv_data, depthwiseconv
using Printf: @sprintf
using LinearAlgebra: diagm, dot, LowerTriangular, norm
using Statistics: mean, std
Expand Down Expand Up @@ -182,12 +182,20 @@ end
2y + x
end

@test gradtest(conv, rand(10, 3, 2), randn(Float64,2, 3, 2))
@test gradtest(conv, rand(10, 10, 3, 2), randn(Float64,2, 2, 3, 2))
@test gradtest(conv, rand(10, 10, 10, 3, 2), randn(Float64,2, 2, 2, 3, 2))
@test gradtest(conv, rand(10, 3, 2), randn(Float64, 2, 3, 2))
@test gradtest(conv, rand(10, 10, 3, 2), randn(Float64, 2, 2, 3, 2))
@test gradtest(conv, rand(10, 10, 10, 3, 2), randn(Float64, 2, 2, 2, 3, 2))

@test gradtest(∇conv_data, rand(10, 3, 2), randn(Float64, 2, 2, 3))
@test gradtest(∇conv_data, rand(10, 10, 3, 2), randn(Float64,2, 2, 2, 3))
@test gradtest(∇conv_data, rand(10, 10, 10, 3, 2), randn(Float64,2, 2, 2, 2, 3))

@test gradtest(depthwiseconv, rand(10,10,3,2), randn(2, 2, 2, 3))

@test gradtest(∇conv_data, rand(10, 3, 2), randn(Float64, 2, 2, 3))
@test gradtest(∇conv_data, rand(10, 10, 3, 2), randn(Float64, 2, 2, 2, 3))
@test gradtest(∇conv_data, rand(10, 10, 10, 3, 2), randn(Float64, 2, 2, 2, 2, 3))

@test gradtest(x -> maxpool(x, (2,2)), rand(10, 10, 3, 2))
@test gradtest(x -> maxpool(x, (2,2,2)), rand(10, 10, 10, 3, 2))

Expand Down