Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

move enzyme to extension #2467

Merged
merged 5 commits into from
Jul 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@ version = "0.14.17"
Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
Compat = "34da2185-b29b-5c13-b0c7-acf172513d20"
Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9"
Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MLUtils = "f1d291b0-491e-4a28-83b9-f70985020b54"
Expand All @@ -26,13 +25,15 @@ Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"
[weakdeps]
AMDGPU = "21141c5a-9bdb-4563-92ae-f87d6854732e"
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9"
Metal = "dde4c033-4e86-420c-a63e-0dd931031962"
cuDNN = "02a925ec-e4fe-4b08-9a7e-0d78e3d38ccd"

[extensions]
FluxAMDGPUExt = "AMDGPU"
FluxCUDAExt = "CUDA"
FluxCUDAcuDNNExt = ["CUDA", "cuDNN"]
FluxEnzymeExt = "Enzyme"
FluxMetalExt = "Metal"

[compat]
Expand Down
47 changes: 47 additions & 0 deletions ext/FluxEnzymeExt/FluxEnzymeExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
module FluxEnzymeExt

using Flux
import Flux.Train: train!, _rule_to_state
import Flux.Optimise
import Optimisers
import Enzyme
using Enzyme: EnzymeRules, Active, Const, Duplicated, autodiff, ReverseWithPrimal
using ProgressLogging: @withprogress, @logprogress

_make_zero_internal!(x::AbstractArray) = fill!(x, 0)
_make_zero_internal!(x) = x
_make_zero!(model) = fmap(_make_zero_internal!, model)

_applyloss(loss, model, d...) = loss(model, d...)

EnzymeRules.inactive(::typeof(Flux.Losses._check_sizes), args...) = true

using Flux: _old_to_new # from src/deprecations.jl
train!(loss, model::Duplicated, data, opt::Optimise.AbstractOptimiser; cb=nothing) =
train!(loss, model, data, _old_to_new(opt); cb)

function train!(loss, model::Duplicated, data, rule::Optimisers.AbstractRule; cb = nothing)
train!(loss, model, data, _rule_to_state(model, rule); cb)
end

function train!(loss, model::Duplicated, data, opt; cb = nothing)
isnothing(cb) || error("""train! does not support callback functions.
For more control use a loop with `gradient` and `update!`.""")
@withprogress for (i,d) in enumerate(data)
d_splat = d isa Tuple ? d : (d,)

_make_zero!(model.dval)
_, l = Enzyme.autodiff(ReverseWithPrimal, _applyloss,
Active, Const(loss), model, map(Const, d_splat)...)

if !isfinite(l)
throw(DomainError(lazy"Loss is $l on data item $i, stopping training"))
end
opt, model2 = Optimisers.update!(opt, model.val, model.dval)
model = Duplicated(model2, model.dval)

@logprogress Base.haslength(data) ? i/length(data) : nothing
end
end

end # FluxEnzymeExt
3 changes: 1 addition & 2 deletions src/deprecations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -109,8 +109,7 @@ train!(loss, ps::Params, data, opt::Optimisers.AbstractRule; cb=nothing) = error

train!(loss, model, data, opt::Optimise.AbstractOptimiser; cb=nothing) =
train!(loss, model, data, _old_to_new(opt); cb)
train!(loss, model::Enzyme.Duplicated, data, opt::Optimise.AbstractOptimiser; cb=nothing) =
train!(loss, model, data, _old_to_new(opt); cb)


# Next, to use the new `setup` with the still-exported old-style `Adam` etc:
import .Train: setup
Expand Down
1 change: 0 additions & 1 deletion src/functor.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@ using LinearAlgebra: Cholesky
using Zygote: IdSet
import Functors: Functors, @functor, functor, fmap, isleaf
using SparseArrays: AbstractSparseArray
using Enzyme

"""
testmode!(model, [mode]) -> model
Expand Down
2 changes: 0 additions & 2 deletions src/losses/utils.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
import Enzyme

"""
xlogx(x)
Expand Down Expand Up @@ -38,4 +37,3 @@ end
_check_sizes(ŷ, y) = nothing # pass-through, for constant label e.g. y = 1

ChainRulesCore.@non_differentiable _check_sizes(ŷ::Any, y::Any)
Enzyme.EnzymeRules.inactive(::typeof(_check_sizes), args...) = true
29 changes: 1 addition & 28 deletions src/train.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@ using Optimisers: Optimisers
using Functors: fmap, fmapstructure
using ..Flux: Flux # used only in docstring
import ..Flux.Optimise: train!, update! # during 0.13, we add methods to the old functions
import Enzyme

export setup, train!

Expand Down Expand Up @@ -53,12 +52,6 @@ function setup(rule::Optimisers.AbstractRule, model)
state
end

_make_zero_internal!(x::AbstractArray) = fill!(x, 0)
_make_zero_internal!(x) = x
_make_zero!(model) = fmap(_make_zero_internal!, model)

_applyloss(loss, model, d...) = loss(model, d...)

"""
train!(loss, model, data, opt_state)

Expand All @@ -67,7 +60,7 @@ according to a particular optimisation rule encoded in `opt_state`.
Iterates through `data` once, evaluating for each `d in data` either
`loss(model, d...)` if `d isa Tuple`, or else `loss(model, d)` for other `d`.

If `model` is an Enzyme.Duplicated, gradients will be computed with Enzyme,
If `model` is an Enzyme.Duplicated and `Enzyme.jl` is loaded, gradients will be computed with Enzyme,
otherwise they will be computed with Zygote.

For example, with these definitions...
Expand Down Expand Up @@ -122,32 +115,12 @@ function train!(loss, model, data, opt; cb = nothing)
@logprogress Base.haslength(data) ? i/length(data) : nothing
end
end
function train!(loss, model::Enzyme.Duplicated, data, opt; cb = nothing)
isnothing(cb) || error("""train! does not support callback functions.
For more control use a loop with `gradient` and `update!`.""")
@withprogress for (i,d) in enumerate(data)
d_splat = d isa Tuple ? d : (d,)

_make_zero!(model.dval)
_, l = Enzyme.autodiff(Enzyme.ReverseWithPrimal, _applyloss, Enzyme.Active, Enzyme.Const(loss), model, map(Enzyme.Const, d_splat)...)

if !isfinite(l)
throw(DomainError(lazy"Loss is $l on data item $i, stopping training"))
end
opt, model2 = Optimisers.update!(opt, model.val, model.dval)
model = Enzyme.Duplicated(model2, model.dval)

@logprogress Base.haslength(data) ? i/length(data) : nothing
end
end

# This method let you use Optimisers.Descent() without setup, when there is no state
function train!(loss, model, data, rule::Optimisers.AbstractRule; cb = nothing)
train!(loss, model, data, _rule_to_state(model, rule); cb)
end
function train!(loss, model::Enzyme.Duplicated, data, rule::Optimisers.AbstractRule; cb = nothing)
train!(loss, model, data, _rule_to_state(model, rule); cb)
end

function _rule_to_state(model, rule::Optimisers.AbstractRule)
state = setup(rule, model)
Expand Down
7 changes: 2 additions & 5 deletions test/ext_enzyme/enzyme.jl
Original file line number Diff line number Diff line change
@@ -1,15 +1,12 @@
using Test
using Flux

using Enzyme
using Enzyme: Enzyme, make_zero, Active, Duplicated, ReverseWithPrimal

using Functors
using FiniteDifferences
using CUDA

_make_zero(x::Union{Number,AbstractArray}) = zero(x)
_make_zero(x) = x
make_zero(model) = fmap(_make_zero, model)
## make_differential(model) = fmapstructure(make_zero, model) # NOT SUPPORTED, See https://github.com/EnzymeAD/Enzyme.jl/issues/1329

function gradient_fd(f, x...)
x = [cpu(x) for x in x]
Expand Down
4 changes: 2 additions & 2 deletions test/train.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,10 @@ import Optimisers

using Test
using Random
using Enzyme
import Enzyme

function train_enzyme!(fn, model, args...; kwargs...)
Flux.train!(fn, Duplicated(model, Enzyme.make_zero(model)), args...; kwargs...)
Flux.train!(fn, Enzyme.Duplicated(model, Enzyme.make_zero(model)), args...; kwargs...)
end

for (trainfn!, name) in ((Flux.train!, "Zygote"), (train_enzyme!, "Enzyme"))
Expand Down
Loading