Skip to content

Commit

Permalink
Merge #1287
Browse files Browse the repository at this point in the history
1287: Add CTC loss to new Losses module r=CarloLucibello a=maetshju

This is a redux of adding the connectionist temporal classification loss from #342, now that the Losses module has been merged in #1264. Discussion in #342 suggested that a new PR would be easier than rebasing.

Since the last commit in #342, functions and data structures from `CUDAnative.jl` and `CuArrays.jl` have been updated to work with `CUDA.jl`. This is in addition to incorporating the loss function into the Losses module.

### PR Checklist

- [X] Tests are added
- [X] Entry in NEWS.md
- [X] Documentation, if applicable
- [ ] Final review from `@dhairyagandhi96` (for API changes).


Co-authored-by: Matt Kelley <matthew.curtis.kelley@gmail.com>
Co-authored-by: Matthew C. Kelley <matthew.curtis.kelley@gmail.com>
  • Loading branch information
bors[bot] and maetshju authored Jan 20, 2021
2 parents 02ea511 + bc94a16 commit 758f06f
Show file tree
Hide file tree
Showing 7 changed files with 482 additions and 2 deletions.
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
* Dense and Conv layers no longer perform [implicit type conversion](https://github.com/FluxML/Flux.jl/pull/1394).
* Excise datasets in favour of other providers in the julia ecosystem.
* Added option to set `bias` to [false](https://github.com/FluxML/Flux.jl/pull/1379) to eliminating `bias` from being trained.
* Add [CTC loss function](https://github.com/FluxML/Flux.jl/pull/1287) to Losses module
* Removed kwarg only constructors for [`convolutional layers`](https://github.com/FluxML/Flux.jl/pull/1379).
* Add [sparse initialization](https://github.com/FluxML/Flux.jl/pull/1454) as described in [Deep learning via Hessian-free optimization](https://dl.acm.org/doi/abs/10.5555/3104322.3104416).
* Moved GPU CI to use buildkite instead of GitLab
Expand Down
7 changes: 5 additions & 2 deletions src/losses/Losses.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,12 @@ export mse, mae, msle,
tversky_loss,
dice_coeff_loss,
poisson_loss,
hinge_loss, squared_hinge_loss
hinge_loss, squared_hinge_loss,
ctc_loss

include("utils.jl")
include("functions.jl")
include("ctc.jl")
if CUDA.functional() include("ctc-gpu.jl") end

end #module
end #module
232 changes: 232 additions & 0 deletions src/losses/ctc-gpu.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,232 @@
# GPU implementation

# a port of the GPU kernels from Baidu's C++ warp-ctc package,
# which itself is Copyright 2015-2016 Baidu USA LLC
# and available under the Apache 2.0 license
#
# Apache 2.0 license: https://www.apache.org/licenses/LICENSE-2.0
# GitHub: https://github.com/baidu-research/warp-ctc/
# paper: https://arxiv.org/pdf/1512.02595.pdf

using Flux
using Statistics
using CUDA
using NNlib

const MAX_THREADS = 256

function log_plus_f(p1, p2)
isinf(p1) && return p2
isinf(p2) && return p1
if p1 < p2
p1, p2 = p2, p1
end
return p1 + CUDA.log(1+CUDA.exp(p2 - p1))
end

function count_repeats(A)
repeats = 0
for (i,elem) in enumerate(A)
if i > 1 && A[i] == A[i-1]
repeats += 1
end
end
return repeats
end

function compute_alpha_kernel(probs, labelSize, uttLength, repeats, labelsWithoutBlanks, labelsWithBlanks, alpha, blankLabel)

tid = threadIdx().x
L = labelSize
T = uttLength
S = length(labelsWithBlanks)

if L + repeats > T
return nothing
end
labels = labelsWithBlanks

# Corner-case checking
start = (L + repeats <= T) ? 0 : 1
last = S > 1 ? 2 : 1

# Fill in first column (time step)
i = tid
while i <= last - start
alpha[start+i, 1] = probs[labels[start+i], 1]
i += blockDim().x
end
sync_threads()

# Fill in coefficients for each time step
for t=2:T
# Corner-case checking
if tid == 1 && !(1 < S - 2*(T-t) - 1)
if start == 0
alpha[1, t] = alpha[1, t-1] + probs[blankLabel, t]
elseif start == 1
alpha[1, t] = alpha[1, t-1]
end
end
sync_threads()

# Fill in coefficients for each label class in the target output sequence;
# each thread will process the calculations for one class
idx = tid+1
while idx <= S
prevSum = log_plus_f(alpha[idx, t-1], alpha[idx-1, t-1])
if labels[idx] != blankLabel && idx != 2 && labels[idx] != labels[idx-2]
prevSum = log_plus_f(prevSum, alpha[idx-2, t-1])
end
if idx < S - 2*(T-t) - 1
alpha[idx, t] = -Inf32
else
alpha[idx, t] = prevSum + probs[labels[idx], t]
end
idx += blockDim().x
end
sync_threads()
end
return nothing
end

function compute_beta_and_grad_kernel(probs, labelSize, uttLength,
repeatsInLabel, labelsWithBlanks,
alphas, beta, output, accum,
grad, blankLabel, loss)

tid = threadIdx().x
L = labelSize
T = uttLength
S = 2*L + 1
repeats = repeatsInLabel
labels = labelsWithBlanks

if (L+repeats) > T
return nothing
end

# Corner-case checking
start = S > 1 ? S-2 : 0
last = L + repeats < T ? S : S-1
sync_threads()
i = tid

# Calculate coefficients for last column (time step)
# then determine alpha and beta product
while i <= last - start
beta[i+start, T] = 0
output[i+start, T] = beta[i+start, T] + alphas[i+start, T]
i += blockDim().x
end
sync_threads()

# Fill in `accum` for last column (time step)
if tid == 1
for i=1:S
labelIdx = labels[i]
accum[labelIdx, T] = log_plus_f(accum[labelIdx, T], output[i, T])
end
end
sync_threads()

# Fill in `grad` for last column (time step)
idx = tid
while idx <= size(grad, 1)
s = -Inf32
for i=1:S
s = log_plus_f(s, output[i, T])
end

# ∂L/∂a (where a is activation before logsoftmax)
grad[idx, T] = CUDA.exp(probs[idx, T]) - CUDA.exp(accum[idx, T] - s)
idx += blockDim().x
end
sync_threads()

# Fill in the rest of the coefficients
t = T-1
while t >= 1
if t < T
idx = tid
while idx <= S
nextSum = probs[labels[idx], t+1] + beta[idx, t+1]
if idx < S
nextSum = log_plus_f(nextSum,
probs[labels[idx+1], t+1] + beta[idx+1, t+1])
end
if labels[idx] != blankLabel && idx != S-1 && labels[idx] != labels[idx+2]
nextSum = log_plus_f(nextSum,
probs[labels[idx+2], t+1] + beta[idx + 2, t+1])
end
if idx > 2*t
beta[idx, t] = -Inf32
else
beta[idx, t] = nextSum
end
idx += blockDim().x
end
sync_threads()
idx = tid
while idx <= S
output[idx, t] = alphas[idx, t] + beta[idx, t]
idx += blockDim().x
end
sync_threads()
end
sync_threads()

# Calculate accumulated alpha-beta products for each label class for
# each time step; used in calculating gradients
if tid == 1
for i=1:S
labelIdx = labels[i]
accum[labelIdx, t] = log_plus_f(accum[labelIdx, t], output[i, t])
end
end
sync_threads()
idx = tid

# Calculate gradients
while idx <= size(grad, 1)

# ∂L/∂a (where a is activation before logsoftmax)
grad[idx, t] = CUDA.exp(probs[idx, t]) - CUDA.exp(accum[idx, t] + loss)
idx += blockDim().x
end
sync_threads()
t -= 1
sync_threads()
end
return nothing
end

function ctc_alpha(ŷ::CuArray, y)
= logsoftmax(ŷ)
blank = size(ŷ, 1)
z′ = fill(blank, 2 * length(y) + 1)
z′[eachindex(y) .* 2] = y
T = size(ŷ, 2)
U′ = 2*length(y) + 1
alphas = CUDA.fill(log(zero(ŷ[1])), U′,T)
nRepeats = count_repeats(y)
nThreads = min(U′, MAX_THREADS)
@cuda blocks=1 threads=nThreads compute_alpha_kernel(ŷ, length(y), T, nRepeats, CuArray(y), CuArray(z′), alphas, blank)
return (loss=-1 * logsumexp(alphas[end-1:end]), alpha=alphas, z′=z′, yhat=ŷ, nRepeats=nRepeats)
end

ctc_loss(ŷ::CuArray, y) = ctc_alpha(ŷ::CuArray, y).loss

function ∇ctc_loss(ŷ::CuArray, y, out)
loss, alphas, z′, ŷ, nRepeats = out
U′, T = size(alphas)
blank = size(ŷ, 1)
typed_zero = zero(first(ŷ))
betas = CUDA.fill(log(typed_zero), U′, T)
output = CUDA.fill(log(typed_zero), U′, T)
nThreads = min(U′, MAX_THREADS)
grads = CUDA.fill(log(typed_zero), size(ŷ))
accum = CUDA.fill(log(typed_zero), size(ŷ))
@cuda blocks=1 threads=nThreads compute_beta_and_grad_kernel(ŷ, length(y), T, nRepeats, CuArray(z′), alphas, betas, output, accum, grads, blank, loss)
return grads
end
138 changes: 138 additions & 0 deletions src/losses/ctc.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
using Flux
using Zygote: @adjoint
using Statistics
using NNlib

# CPU implementation
"""
logaddexp(a, b)
Adds log-space `a` and `b` such that the result equals `log(exp(a)+exp(b))`
"""
function logaddexp(a, b)
isinf(a) && return b
isinf(b) && return a

# always want the greater number on the left in the exponentiation;
# the magnitude difference may end up making the number very positive
# which will cause exp() to return Inf
# E.g., a = -900, b = -800, will give exp(-800 - -900), which will be
# Inf for Float32 values
if a < b
a, b = b, a
end
return a + log(1+exp(b-a))
end

"""
add_blanks(z)
Adds blanks to the start and end of `z`, and between items in `z`
"""
function add_blanks(z, blank)
z′ = fill(blank, 2*length(z) + 1)
z′[2 .* eachindex(z)] = z
return z′
end

function ctc_alpha(ŷ::AbstractArray, y)
typed_zero = zero(ŷ[1])
= logsoftmax(ŷ)
blank = size(ŷ, 1)
z′ = add_blanks(y, blank)
T = size(ŷ, 2)
U′ = length(z′)

α = fill(log(typed_zero), U′, T)
α[1,1] = ŷ[blank, 1]
α[2,1] = ŷ[z′[2], 1]
for t=2:T
bound = max(1, U′ - 2(T - t) - 1)
for u=bound:U′
if u == 1
α[u,t] = α[u, t-1]
else
α[u,t] = logaddexp(α[u, t-1], α[u-1, t-1])

# array bounds check and f(u) function from Eq. 7.9
if u > 2 && !(z′[u] == blank || z′[u-2] == z′[u])
α[u,t] = logaddexp(α[u,t], α[u-2,t-1])
end
end
α[u,t] += ŷ[z′[u], t]
end
end
return (loss=-1 * logaddexp(α[end,T], α[end-1, T]), alpha=α, zprime=z′, logsoftyhat=ŷ)
end

function ∇ctc_loss(ŷ::AbstractArray, y, out)
loss, α, z′, ŷ = out
U′, T = size(α)
blank = size(ŷ, 1)
typed_zero = zero(first(α))

# Calculate beta coefficients, from the bottom-right, to the upper-left
β = fill(log(typed_zero), U′, T)

# Fill bottom-right corner so bounding errors can be avoided
# by starting `u` at `U′-1`
β[U′, T] = typed_zero
β[U′-1, T] = typed_zero

# start at T-1 so that β(T, u) = log(0) for all u < U′ - 1
for t=(T-1):-1:1
bound = min(U′, 2t)
for u=bound:-1:1
if u == U′
β[u,t] = ŷ[z′[u], t+1] + β[u, t+1]
else
β[u,t] = logaddexp(ŷ[z′[u], t+1] + β[u, t+1], ŷ[z′[u+1], t+1] + β[u+1,t+1])

# array bounds check and g(u) function from Eq. 7.16
if u+2 <= U′ && z′[u] != blank && z′[u] != z′[u+2]
β[u,t] = logaddexp(β[u,t], ŷ[z′[u+2], t+1] + β[u+2, t+1])
end
end
end
end

# Accumulate alpha-beta products for each category,
# then calculate gradients
accum = fill(log(typed_zero), size(ŷ))
for t=1:T
for u=1:U′
accum[z′[u], t] = logaddexp(accum[z′[u], t], α[u,t] + β[u,t])
end
end
grads = exp.(ŷ) .- exp.(accum .+ loss)
return grads
end

"""
ctc_loss(ŷ, y)
Computes the connectionist temporal classification loss between `ŷ`
and `y`.
`ŷ` must be a classes-by-time matrices, i.e., each row
represents a class and each column represents a time step.
Additionally, the `logsoftmax` function will be applied to `ŷ`, so
`ŷ` must be the raw activation values from the neural network and
not, for example, the activations after being passed through a
`softmax` activation function. `y` must be a 1D array of the labels
associated with `ŷ`. The blank label is assumed to be the last label
category in `ŷ`, so it is equivalent to `size(ŷ, 1)`.
Used for sequence-to-sequence classification problems such as
speech recognition and handwriting recognition where the exact
time-alignment of the output (e.g., letters) is not needed to
solve the problem. See [Graves et al. (2006)](https://www.cs.toronto.edu/~graves/icml_2006.pdf)
or [Graves (2012)](https://www.cs.toronto.edu/~graves/preprint.pdf#chapter.7)
for mathematical details.
"""
ctc_loss(ŷ::AbstractArray, y) = ctc_alpha(ŷ, y).loss

@adjoint function ctc_loss(ŷ, y)
out = ctc_alpha(ŷ, y)
ctc_loss_pullback(Δ) =.* ∇ctc_loss(ŷ, y, out), nothing)
return out.loss, ctc_loss_pullback
end
Loading

0 comments on commit 758f06f

Please sign in to comment.