-
-
Notifications
You must be signed in to change notification settings - Fork 608
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1287: Add CTC loss to new Losses module r=CarloLucibello a=maetshju This is a redux of adding the connectionist temporal classification loss from #342, now that the Losses module has been merged in #1264. Discussion in #342 suggested that a new PR would be easier than rebasing. Since the last commit in #342, functions and data structures from `CUDAnative.jl` and `CuArrays.jl` have been updated to work with `CUDA.jl`. This is in addition to incorporating the loss function into the Losses module. ### PR Checklist - [X] Tests are added - [X] Entry in NEWS.md - [X] Documentation, if applicable - [ ] Final review from `@dhairyagandhi96` (for API changes). Co-authored-by: Matt Kelley <matthew.curtis.kelley@gmail.com> Co-authored-by: Matthew C. Kelley <matthew.curtis.kelley@gmail.com>
- Loading branch information
Showing
7 changed files
with
482 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,232 @@ | ||
# GPU implementation | ||
|
||
# a port of the GPU kernels from Baidu's C++ warp-ctc package, | ||
# which itself is Copyright 2015-2016 Baidu USA LLC | ||
# and available under the Apache 2.0 license | ||
# | ||
# Apache 2.0 license: https://www.apache.org/licenses/LICENSE-2.0 | ||
# GitHub: https://github.com/baidu-research/warp-ctc/ | ||
# paper: https://arxiv.org/pdf/1512.02595.pdf | ||
|
||
using Flux | ||
using Statistics | ||
using CUDA | ||
using NNlib | ||
|
||
const MAX_THREADS = 256 | ||
|
||
function log_plus_f(p1, p2) | ||
isinf(p1) && return p2 | ||
isinf(p2) && return p1 | ||
if p1 < p2 | ||
p1, p2 = p2, p1 | ||
end | ||
return p1 + CUDA.log(1+CUDA.exp(p2 - p1)) | ||
end | ||
|
||
function count_repeats(A) | ||
repeats = 0 | ||
for (i,elem) in enumerate(A) | ||
if i > 1 && A[i] == A[i-1] | ||
repeats += 1 | ||
end | ||
end | ||
return repeats | ||
end | ||
|
||
function compute_alpha_kernel(probs, labelSize, uttLength, repeats, labelsWithoutBlanks, labelsWithBlanks, alpha, blankLabel) | ||
|
||
tid = threadIdx().x | ||
L = labelSize | ||
T = uttLength | ||
S = length(labelsWithBlanks) | ||
|
||
if L + repeats > T | ||
return nothing | ||
end | ||
labels = labelsWithBlanks | ||
|
||
# Corner-case checking | ||
start = (L + repeats <= T) ? 0 : 1 | ||
last = S > 1 ? 2 : 1 | ||
|
||
# Fill in first column (time step) | ||
i = tid | ||
while i <= last - start | ||
alpha[start+i, 1] = probs[labels[start+i], 1] | ||
i += blockDim().x | ||
end | ||
sync_threads() | ||
|
||
# Fill in coefficients for each time step | ||
for t=2:T | ||
# Corner-case checking | ||
if tid == 1 && !(1 < S - 2*(T-t) - 1) | ||
if start == 0 | ||
alpha[1, t] = alpha[1, t-1] + probs[blankLabel, t] | ||
elseif start == 1 | ||
alpha[1, t] = alpha[1, t-1] | ||
end | ||
end | ||
sync_threads() | ||
|
||
# Fill in coefficients for each label class in the target output sequence; | ||
# each thread will process the calculations for one class | ||
idx = tid+1 | ||
while idx <= S | ||
prevSum = log_plus_f(alpha[idx, t-1], alpha[idx-1, t-1]) | ||
if labels[idx] != blankLabel && idx != 2 && labels[idx] != labels[idx-2] | ||
prevSum = log_plus_f(prevSum, alpha[idx-2, t-1]) | ||
end | ||
if idx < S - 2*(T-t) - 1 | ||
alpha[idx, t] = -Inf32 | ||
else | ||
alpha[idx, t] = prevSum + probs[labels[idx], t] | ||
end | ||
idx += blockDim().x | ||
end | ||
sync_threads() | ||
end | ||
return nothing | ||
end | ||
|
||
function compute_beta_and_grad_kernel(probs, labelSize, uttLength, | ||
repeatsInLabel, labelsWithBlanks, | ||
alphas, beta, output, accum, | ||
grad, blankLabel, loss) | ||
|
||
tid = threadIdx().x | ||
L = labelSize | ||
T = uttLength | ||
S = 2*L + 1 | ||
repeats = repeatsInLabel | ||
labels = labelsWithBlanks | ||
|
||
if (L+repeats) > T | ||
return nothing | ||
end | ||
|
||
# Corner-case checking | ||
start = S > 1 ? S-2 : 0 | ||
last = L + repeats < T ? S : S-1 | ||
sync_threads() | ||
i = tid | ||
|
||
# Calculate coefficients for last column (time step) | ||
# then determine alpha and beta product | ||
while i <= last - start | ||
beta[i+start, T] = 0 | ||
output[i+start, T] = beta[i+start, T] + alphas[i+start, T] | ||
i += blockDim().x | ||
end | ||
sync_threads() | ||
|
||
# Fill in `accum` for last column (time step) | ||
if tid == 1 | ||
for i=1:S | ||
labelIdx = labels[i] | ||
accum[labelIdx, T] = log_plus_f(accum[labelIdx, T], output[i, T]) | ||
end | ||
end | ||
sync_threads() | ||
|
||
# Fill in `grad` for last column (time step) | ||
idx = tid | ||
while idx <= size(grad, 1) | ||
s = -Inf32 | ||
for i=1:S | ||
s = log_plus_f(s, output[i, T]) | ||
end | ||
|
||
# ∂L/∂a (where a is activation before logsoftmax) | ||
grad[idx, T] = CUDA.exp(probs[idx, T]) - CUDA.exp(accum[idx, T] - s) | ||
idx += blockDim().x | ||
end | ||
sync_threads() | ||
|
||
# Fill in the rest of the coefficients | ||
t = T-1 | ||
while t >= 1 | ||
if t < T | ||
idx = tid | ||
while idx <= S | ||
nextSum = probs[labels[idx], t+1] + beta[idx, t+1] | ||
if idx < S | ||
nextSum = log_plus_f(nextSum, | ||
probs[labels[idx+1], t+1] + beta[idx+1, t+1]) | ||
end | ||
if labels[idx] != blankLabel && idx != S-1 && labels[idx] != labels[idx+2] | ||
nextSum = log_plus_f(nextSum, | ||
probs[labels[idx+2], t+1] + beta[idx + 2, t+1]) | ||
end | ||
if idx > 2*t | ||
beta[idx, t] = -Inf32 | ||
else | ||
beta[idx, t] = nextSum | ||
end | ||
idx += blockDim().x | ||
end | ||
sync_threads() | ||
idx = tid | ||
while idx <= S | ||
output[idx, t] = alphas[idx, t] + beta[idx, t] | ||
idx += blockDim().x | ||
end | ||
sync_threads() | ||
end | ||
sync_threads() | ||
|
||
# Calculate accumulated alpha-beta products for each label class for | ||
# each time step; used in calculating gradients | ||
if tid == 1 | ||
for i=1:S | ||
labelIdx = labels[i] | ||
accum[labelIdx, t] = log_plus_f(accum[labelIdx, t], output[i, t]) | ||
end | ||
end | ||
sync_threads() | ||
idx = tid | ||
|
||
# Calculate gradients | ||
while idx <= size(grad, 1) | ||
|
||
# ∂L/∂a (where a is activation before logsoftmax) | ||
grad[idx, t] = CUDA.exp(probs[idx, t]) - CUDA.exp(accum[idx, t] + loss) | ||
idx += blockDim().x | ||
end | ||
sync_threads() | ||
t -= 1 | ||
sync_threads() | ||
end | ||
return nothing | ||
end | ||
|
||
function ctc_alpha(ŷ::CuArray, y) | ||
ŷ = logsoftmax(ŷ) | ||
blank = size(ŷ, 1) | ||
z′ = fill(blank, 2 * length(y) + 1) | ||
z′[eachindex(y) .* 2] = y | ||
T = size(ŷ, 2) | ||
U′ = 2*length(y) + 1 | ||
alphas = CUDA.fill(log(zero(ŷ[1])), U′,T) | ||
nRepeats = count_repeats(y) | ||
nThreads = min(U′, MAX_THREADS) | ||
@cuda blocks=1 threads=nThreads compute_alpha_kernel(ŷ, length(y), T, nRepeats, CuArray(y), CuArray(z′), alphas, blank) | ||
return (loss=-1 * logsumexp(alphas[end-1:end]), alpha=alphas, z′=z′, yhat=ŷ, nRepeats=nRepeats) | ||
end | ||
|
||
ctc_loss(ŷ::CuArray, y) = ctc_alpha(ŷ::CuArray, y).loss | ||
|
||
function ∇ctc_loss(ŷ::CuArray, y, out) | ||
loss, alphas, z′, ŷ, nRepeats = out | ||
U′, T = size(alphas) | ||
blank = size(ŷ, 1) | ||
typed_zero = zero(first(ŷ)) | ||
betas = CUDA.fill(log(typed_zero), U′, T) | ||
output = CUDA.fill(log(typed_zero), U′, T) | ||
nThreads = min(U′, MAX_THREADS) | ||
grads = CUDA.fill(log(typed_zero), size(ŷ)) | ||
accum = CUDA.fill(log(typed_zero), size(ŷ)) | ||
@cuda blocks=1 threads=nThreads compute_beta_and_grad_kernel(ŷ, length(y), T, nRepeats, CuArray(z′), alphas, betas, output, accum, grads, blank, loss) | ||
return grads | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
using Flux | ||
using Zygote: @adjoint | ||
using Statistics | ||
using NNlib | ||
|
||
# CPU implementation | ||
""" | ||
logaddexp(a, b) | ||
Adds log-space `a` and `b` such that the result equals `log(exp(a)+exp(b))` | ||
""" | ||
function logaddexp(a, b) | ||
isinf(a) && return b | ||
isinf(b) && return a | ||
|
||
# always want the greater number on the left in the exponentiation; | ||
# the magnitude difference may end up making the number very positive | ||
# which will cause exp() to return Inf | ||
# E.g., a = -900, b = -800, will give exp(-800 - -900), which will be | ||
# Inf for Float32 values | ||
if a < b | ||
a, b = b, a | ||
end | ||
return a + log(1+exp(b-a)) | ||
end | ||
|
||
""" | ||
add_blanks(z) | ||
Adds blanks to the start and end of `z`, and between items in `z` | ||
""" | ||
function add_blanks(z, blank) | ||
z′ = fill(blank, 2*length(z) + 1) | ||
z′[2 .* eachindex(z)] = z | ||
return z′ | ||
end | ||
|
||
function ctc_alpha(ŷ::AbstractArray, y) | ||
typed_zero = zero(ŷ[1]) | ||
ŷ = logsoftmax(ŷ) | ||
blank = size(ŷ, 1) | ||
z′ = add_blanks(y, blank) | ||
T = size(ŷ, 2) | ||
U′ = length(z′) | ||
|
||
α = fill(log(typed_zero), U′, T) | ||
α[1,1] = ŷ[blank, 1] | ||
α[2,1] = ŷ[z′[2], 1] | ||
for t=2:T | ||
bound = max(1, U′ - 2(T - t) - 1) | ||
for u=bound:U′ | ||
if u == 1 | ||
α[u,t] = α[u, t-1] | ||
else | ||
α[u,t] = logaddexp(α[u, t-1], α[u-1, t-1]) | ||
|
||
# array bounds check and f(u) function from Eq. 7.9 | ||
if u > 2 && !(z′[u] == blank || z′[u-2] == z′[u]) | ||
α[u,t] = logaddexp(α[u,t], α[u-2,t-1]) | ||
end | ||
end | ||
α[u,t] += ŷ[z′[u], t] | ||
end | ||
end | ||
return (loss=-1 * logaddexp(α[end,T], α[end-1, T]), alpha=α, zprime=z′, logsoftyhat=ŷ) | ||
end | ||
|
||
function ∇ctc_loss(ŷ::AbstractArray, y, out) | ||
loss, α, z′, ŷ = out | ||
U′, T = size(α) | ||
blank = size(ŷ, 1) | ||
typed_zero = zero(first(α)) | ||
|
||
# Calculate beta coefficients, from the bottom-right, to the upper-left | ||
β = fill(log(typed_zero), U′, T) | ||
|
||
# Fill bottom-right corner so bounding errors can be avoided | ||
# by starting `u` at `U′-1` | ||
β[U′, T] = typed_zero | ||
β[U′-1, T] = typed_zero | ||
|
||
# start at T-1 so that β(T, u) = log(0) for all u < U′ - 1 | ||
for t=(T-1):-1:1 | ||
bound = min(U′, 2t) | ||
for u=bound:-1:1 | ||
if u == U′ | ||
β[u,t] = ŷ[z′[u], t+1] + β[u, t+1] | ||
else | ||
β[u,t] = logaddexp(ŷ[z′[u], t+1] + β[u, t+1], ŷ[z′[u+1], t+1] + β[u+1,t+1]) | ||
|
||
# array bounds check and g(u) function from Eq. 7.16 | ||
if u+2 <= U′ && z′[u] != blank && z′[u] != z′[u+2] | ||
β[u,t] = logaddexp(β[u,t], ŷ[z′[u+2], t+1] + β[u+2, t+1]) | ||
end | ||
end | ||
end | ||
end | ||
|
||
# Accumulate alpha-beta products for each category, | ||
# then calculate gradients | ||
accum = fill(log(typed_zero), size(ŷ)) | ||
for t=1:T | ||
for u=1:U′ | ||
accum[z′[u], t] = logaddexp(accum[z′[u], t], α[u,t] + β[u,t]) | ||
end | ||
end | ||
grads = exp.(ŷ) .- exp.(accum .+ loss) | ||
return grads | ||
end | ||
|
||
""" | ||
ctc_loss(ŷ, y) | ||
Computes the connectionist temporal classification loss between `ŷ` | ||
and `y`. | ||
`ŷ` must be a classes-by-time matrices, i.e., each row | ||
represents a class and each column represents a time step. | ||
Additionally, the `logsoftmax` function will be applied to `ŷ`, so | ||
`ŷ` must be the raw activation values from the neural network and | ||
not, for example, the activations after being passed through a | ||
`softmax` activation function. `y` must be a 1D array of the labels | ||
associated with `ŷ`. The blank label is assumed to be the last label | ||
category in `ŷ`, so it is equivalent to `size(ŷ, 1)`. | ||
Used for sequence-to-sequence classification problems such as | ||
speech recognition and handwriting recognition where the exact | ||
time-alignment of the output (e.g., letters) is not needed to | ||
solve the problem. See [Graves et al. (2006)](https://www.cs.toronto.edu/~graves/icml_2006.pdf) | ||
or [Graves (2012)](https://www.cs.toronto.edu/~graves/preprint.pdf#chapter.7) | ||
for mathematical details. | ||
""" | ||
ctc_loss(ŷ::AbstractArray, y) = ctc_alpha(ŷ, y).loss | ||
|
||
@adjoint function ctc_loss(ŷ, y) | ||
out = ctc_alpha(ŷ, y) | ||
ctc_loss_pullback(Δ) = (Δ .* ∇ctc_loss(ŷ, y, out), nothing) | ||
return out.loss, ctc_loss_pullback | ||
end |
Oops, something went wrong.