Skip to content

Commit

Permalink
fix ODR (#23)
Browse files Browse the repository at this point in the history
  • Loading branch information
FBartos authored May 23, 2024
1 parent 3628c43 commit 51e4f69
Show file tree
Hide file tree
Showing 8 changed files with 78 additions and 22 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: zcurve
Title: An Implementation of Z-Curves
Version: 2.4.0
Version: 2.4.1
Authors@R: c(
person("František", "Bartoš", email = "f.bartos96@gmail.com", role = c("aut", "cre")),
person("Ulrich", "Schimmack", email = "ulrich.schimmack@utoronto.ca", role = c("aut")))
Expand Down
3 changes: 3 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
## version 2.4.1
- Fixes ODR computation with censored data

## version 2.4.0
- Implementation of ggploting function.

Expand Down
41 changes: 33 additions & 8 deletions R/data-preparation.R
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
#' p-values treated as exact values.
#'
#' @details By default, the function extract the type of test statistic:
#' \itemize{
#' \describe{
#' \item{\code{"F(df1, df2)=x"}}{F-statistic with df1 and df2 degrees of freedom,}
#' \item{\code{"chi(df)=x"}}{Chi-square statistic with df degrees of freedom,}
#' \item{\code{"t(df)=x"}}{for t-statistic with df degrees of freedom,}
Expand Down Expand Up @@ -119,9 +119,10 @@ zcurve_data <- function(data, id = NULL, rounded = TRUE, stat_precise = 2, p_pre
}

# prepare empty containers
p_vals <- rep(NA, length(data))
p_vals.lb <- rep(NA, length(data))
p_vals.ub <- rep(NA, length(data))
p_vals <- rep(NA, length(data))
p_vals.rep <- rep(NA, length(data))
p_vals.lb <- rep(NA, length(data))
p_vals.ub <- rep(NA, length(data))

# compute and allocate the p-values accordingly
for(i in seq_along(data)){
Expand Down Expand Up @@ -151,10 +152,11 @@ zcurve_data <- function(data, id = NULL, rounded = TRUE, stat_precise = 2, p_pre
),
warning = function(w) stop(paste0("The following input could not be decoded: '", data[i], "'."))
)
p_vals.lb[i] <- 0
p_vals.lb[i] <- 0
p_vals.rep[i] <- p_vals.ub[i]
}else if(rounded[i] != -1 && !censored[i]){
# rounded non-censored values

temp_stat_val <- abs(stat_val[i])
temp_stat_val.lb <- abs(stat_val[i]) - 0.5 * 10^-digits[i]
temp_stat_val.ub <- abs(stat_val[i]) + 0.5 * 10^-digits[i]

Expand Down Expand Up @@ -182,9 +184,20 @@ zcurve_data <- function(data, id = NULL, rounded = TRUE, stat_precise = 2, p_pre
),
warning = function(w) stop(paste0("The following input could not be decoded: '", data[i], "'."))
)
p_vals.rep[i] <- tryCatch(
switch(
stat_type[i],
"f" = stats::pf(temp_stat_val, df1 = stat_df1[i], df2 = stat_df2[i], lower.tail = FALSE),
"c" = stats::pchisq(temp_stat_val, df = stat_df1[i], lower.tail = FALSE),
"t" = stats::pt(abs(temp_stat_val), df = stat_df1[i], lower.tail = FALSE) * 2,
"z" = stats::pnorm(abs(temp_stat_val), lower.tail = FALSE) * 2,
"p" = temp_stat_val
),
warning = function(w) stop(paste0("The following input could not be decoded: '", data[i], "'."))
)
}else if(rounded[i] != -1 && censored[i]){
# rounded censored values

temp_stat_val <- abs(stat_val[i])
temp_stat_val.ub <- abs(stat_val[i]) + 0.5 * 10^-digits[i]

p_vals.ub[i] <- tryCatch(
Expand All @@ -198,7 +211,18 @@ zcurve_data <- function(data, id = NULL, rounded = TRUE, stat_precise = 2, p_pre
),
warning = function(w) stop(paste0("The following input could not be decoded: '", data[i], "'."))
)
p_vals.lb[i] <- 0
p_vals.lb[i] <- 0
p_vals.rep[i] <- tryCatch(
switch(
stat_type[i],
"f" = stats::pf(temp_stat_val.lb , df1 = stat_df1[i], df2 = stat_df2[i], lower.tail = FALSE),
"c" = stats::pchisq(temp_stat_val.lb, df = stat_df1[i], lower.tail = FALSE),
"t" = stats::pt(temp_stat_val.lb, df = stat_df1[i], lower.tail = FALSE) * 2,
"z" = stats::pnorm(temp_stat_val.lb, lower.tail = FALSE) * 2,
"p" = temp_stat_val
),
warning = function(w) stop(paste0("The following input could not be decoded: '", data[i], "'."))
)
}
}

Expand All @@ -212,6 +236,7 @@ zcurve_data <- function(data, id = NULL, rounded = TRUE, stat_precise = 2, p_pre
"input" = data[!is.na(p_vals.lb)],
"p.lb" = p_vals.lb[!is.na(p_vals.lb)],
"p.ub" = p_vals.ub[!is.na(p_vals.ub)],
"p.rep" = p_vals.rep[!is.na(p_vals.rep)],
"id" = id[!is.na(p_vals.lb)]
)
)
Expand Down
31 changes: 24 additions & 7 deletions R/main.R
Original file line number Diff line number Diff line change
Expand Up @@ -128,6 +128,7 @@ zcurve <- function(z, z.lb, z.ub, p, p.lb, p.ub, data, method = "EM", boot

### prepare data
if(missing(data)){

# get point estimates on the same scale
if(!missing(z)){
z <- abs(z)
Expand All @@ -150,11 +151,18 @@ zcurve <- function(z, z.lb, z.ub, p, p.lb, p.ub, data, method = "EM", boot
ub <- c(ub, .p_to_z(p.lb))
}

# get the total number of observations before removal for fitting purposes
N_obs <- length(z) + length(lb)
N_sig <- length(z[z >= control$a]) + length(lb[lb >= control$a])

# restrict censoring to the fitting range & treat extremely censored values as extremely significant values
if(!is.null(lb)){

if(any(lb < control$a))
stop("All censored observations must be higher than the fitting range.")
if(any(lb < control$a)){
warning(paste0(sum(lb < control$a), " censored p-values removed due to the upper bound being larger that the fitting range."), immediate. = TRUE, call. = FALSE)
ub <- ub[lb >= control$a]
lb <- lb[lb >= control$a]
}

z <- c(z, lb[lb >= control$b])

Expand Down Expand Up @@ -184,18 +192,26 @@ zcurve <- function(z, z.lb, z.ub, p, p.lb, p.ub, data, method = "EM", boot
object$data <- numeric()
}

# get the total number of observations before removal for fitting purposes
N_obs <- length(data$precise$p)
N_sig <- length(data$precise$p[.p_to_z(data$precise$p) >= control$a])

if(nrow(data$censored) != 0){

lb <- .p_to_z(data$censored$p.ub)
ub <- .p_to_z(data$censored$p.lb)

# get the total number of observations before removal for fitting purposes (using the collected bounds before accounting for rounding)
N_obs <- N_obs + length(.p_to_z(data$censored$p.rep))
N_sig <- N_sig + length(.p_to_z(data$censored$p.rep)[.p_to_z(data$censored$p.rep) >= control$a])

# remove non-significant censored p-values
if(any(lb < control$a)){
warning(paste0(sum(lb < control$a), " censored p-values removed due to the upper bound being larger that the fitting range."), immediate. = TRUE, call. = FALSE)
ub <- ub[lb >= control$a]
lb <- lb[lb >= control$a]
}

# move too significant censored p-values among precise p-values
if(length(lb) > 0 && any(lb >= control$b)){
object$data <- c(object$data, lb[lb >= control$b])
Expand All @@ -222,7 +238,9 @@ zcurve <- function(z, z.lb, z.ub, p, p.lb, p.ub, data, method = "EM", boot
}
}

object$control <- control
object$control <- control
object$N_obs <- N_obs
object$N_sig <- N_sig

# only run the algorithm with some significant results
if(sum(object$data > control$a & object$data < control$b) + nrow(object$data_censoring) < 10)
Expand Down Expand Up @@ -353,9 +371,8 @@ summary.zcurve <- function(object, type = "results", all = FALSE, ERR.adj
iter_text <- object$fit$iter
}

temp_N_sig <- sum(object$data > stats::qnorm(object$control$sig_level/2, lower.tail = FALSE)) +
nrow(object$data_censoring[object$data_censoring$lb > object$control$a,])
temp_N_obs <- length(object$data) + nrow(object$data_censoring)
temp_N_sig <- object$N_sig
temp_N_obs <- object$N_obs
temp_N_used <- sum(object$data > object$control$a & object$data < object$control$b) +
nrow(object$data_censoring[object$data_censoring$lb > object$control$a & object$data_censoring$lb < object$control$b ,])

Expand Down
12 changes: 11 additions & 1 deletion R/zcurve_clustered.R
Original file line number Diff line number Diff line change
Expand Up @@ -66,12 +66,20 @@ zcurve_clustered <- function(data, method = "b", bootstrap = 1000, parallel = FA
z_id <- numeric()
}

# get the total number of observations before removal for fitting purposes
N_obs <- length(data$precise$p)
N_sig <- length(data$precise$p[.p_to_z(data$precise$p) >= control$a])

if(nrow(data$censored) != 0){

lb <- .p_to_z(data$censored$p.ub)
ub <- .p_to_z(data$censored$p.lb)
b_id <- data$censored$id

# get the total number of observations before removal for fitting purposes (using the collected bounds before accounting for rounding)
N_obs <- N_obs + length(.p_to_z(data$censored$p.rep))
N_sig <- N_sig + length(.p_to_z(data$censored$p.rep)[.p_to_z(data$censored$p.rep) >= control$a])

# remove non-significant censored p-values
if(any(lb < control$a)){
warning(paste0(sum(lb < control$a), " censored p-values removed due to the upper bound being larger that the fitting range."), immediate. = TRUE, call. = FALSE)
Expand Down Expand Up @@ -109,7 +117,9 @@ zcurve_clustered <- function(data, method = "b", bootstrap = 1000, parallel = FA
object$data_id <- z_id
object$data_censoring <- data.frame(lb = lb, ub = ub, id = b_id)

object$control <- control
object$control <- control
object$N_obs <- N_obs
object$N_sig <- N_sig

# only run the algorithm with some significant results
if(sum(z > control$a & z < control$b) + length(lb) < 10)
Expand Down
1 change: 1 addition & 0 deletions man/zcurve-package.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/zcurve_data.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

8 changes: 4 additions & 4 deletions tests/testthat/test-zcurve.R
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,7 @@ test_that("z-curve clustered works", {
"EDR 0.722 0.632 0.823" ,
"" ,
"Model converged in 57 + 450.85 iterations" ,
"Fitted using 299 zcurve-data-values. 480 supplied, 299 significant (ODR = 0.62, 95% CI [0.58, 0.67]).",
"Fitted using 299 zcurve-data-values. 500 supplied, 300 significant (ODR = 0.60, 95% CI [0.56, 0.64]).",
"Q = -236.27, 95% CI[-251.36, -224.63]"
))

Expand All @@ -200,7 +200,7 @@ test_that("z-curve clustered works", {
"EDR 0.783 0.655 0.895" ,
"" ,
"Model converged in 73 + 178 iterations" ,
"Fitted using 299 zcurve-data-values. 480 supplied, 299 significant (ODR = 0.62, 95% CI [0.58, 0.67]).",
"Fitted using 299 zcurve-data-values. 500 supplied, 300 significant (ODR = 0.60, 95% CI [0.56, 0.64]).",
"Q = -238.11, 95% CI[-269.95, -219.12]"
))

Expand Down Expand Up @@ -278,7 +278,7 @@ test_that("z-curve clustered works", {
"EDR 0.733 0.639 0.831" ,
"" ,
"Model converged in 72 + 430.1 iterations" ,
"Fitted using 299 zcurve-data-values. 489 supplied, 299 significant (ODR = 0.61, 95% CI [0.57, 0.65]).",
"Fitted using 299 zcurve-data-values. 500 supplied, 300 significant (ODR = 0.60, 95% CI [0.56, 0.64]).",
"Q = -319.14, 95% CI[-340.91, -306.78]"
))

Expand All @@ -294,7 +294,7 @@ test_that("z-curve clustered works", {
"EDR 0.788 0.651 0.901" ,
"" ,
"Model converged in 59 + 188 iterations" ,
"Fitted using 299 zcurve-data-values. 489 supplied, 299 significant (ODR = 0.61, 95% CI [0.57, 0.65]).",
"Fitted using 299 zcurve-data-values. 500 supplied, 300 significant (ODR = 0.60, 95% CI [0.56, 0.64]).",
"Q = -321.39, 95% CI[-361.78, -298.20]"
))

Expand Down

0 comments on commit 51e4f69

Please sign in to comment.