Skip to content

Commit

Permalink
add some details to docs
Browse files Browse the repository at this point in the history
  • Loading branch information
roelof-groenewald committed Nov 6, 2023
1 parent d93de45 commit 045e56f
Showing 1 changed file with 7 additions and 2 deletions.
9 changes: 7 additions & 2 deletions Docs/source/theory/kinetic_fluid_hybrid_model.rst
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,9 @@ integrating over velocity), also called the generalized Ohm's law, is given by:
en_e\vec{E} = \frac{m}{e}\frac{\partial \vec{J}_e}{\partial t} + \frac{m}{e^2}\left( \vec{U}_e\cdot\nabla \right) \vec{J}_e - \nabla\cdot {\overleftrightarrow P}_e - \vec{J}_e\times\vec{B}+\vec{R}_e
where :math:`\vec{U}_e = \vec{J}_e/(en_e)` is the electron fluid velocity,
:math:`{\overleftrightarrow P}_e` is the electron pressure tensor and
:math:`\vec{R}_e` is the drag force due to collisions between electrons and ions.
Applying the above momentum equation to the Maxwell-Faraday equation (:math:`\frac{\partial\vec{B}}{\partial t} = -\nabla\times\vec{E}`)
and substituting in :math:`\vec{J}` calculated from the Maxwell-Ampere equation, gives,

Expand All @@ -59,9 +62,11 @@ Plugging this back into the generalized Ohm' law gives:

.. math::
\left(en +\frac{m}{e\mu_0}\nabla\times\nabla\times\right)\vec{E} = - \frac{m}{e}\left( \frac{\partial\vec{J}_{ext}}{\partial t} + \sum_{s\neq e}\frac{\partial\vec{J}_s}{\partial t} \right) + \frac{m}{e^2}\left( \vec{U}_e\cdot\nabla \right) \vec{J}_e - \nabla\cdot {\overleftrightarrow P}_e - \vec{J}_e\times\vec{B}+\vec{R}_e.
\left(en_e +\frac{m}{e\mu_0}\nabla\times\nabla\times\right)\vec{E} =&
- \frac{m}{e}\left( \frac{\partial\vec{J}_{ext}}{\partial t} + \sum_{s\neq e}\frac{\partial\vec{J}_s}{\partial t} \right) \\
&+ \frac{m}{e^2}\left( \vec{U}_e\cdot\nabla \right) \vec{J}_e - \nabla\cdot {\overleftrightarrow P}_e - \vec{J}_e\times\vec{B}+\vec{R}_e.
If we now further assume electrons are inertialess, the above equation simplifies to,
If we now further assume electrons are inertialess (i.e. :math:`m=0`), the above equation simplifies to,

.. math::
Expand Down

0 comments on commit 045e56f

Please sign in to comment.