Data-glue integrates several data analysis libraries into a single project with iHaskell frontend. It aims to provide a directly usable data science environment and ensure compatibility among all the gathered libraries.
Data-Glue contains:
-
Data structures
-
QuasiQuoter
-
Interoperability
-
Visualisation
- ihaskell v0.9.1.0
A Haskell backend kernel for the IPython project.- ihaskell-aeson v0.3.0.1
IHaskell display instances for Aeson. - ihaskell-blaze v0.3.0.1
IHaskell display instances for blaze-html types. - ihaskell-charts v0.3.0.1
IHaskell display instances for charts types. - ihaskell-diagrams v0.3.2.1
IHaskell display instances for diagram types. - ihaskell-gnuplot v0.1.0.1
IHaskell display instance for Gnuplot (from gnuplot package). - ihaskell-hatex v0.2.1.1
IHaskell display instances for hatex. - ihaskell-inline-r v0.1.1.0
Embed R quasiquotes and plots in IHaskell notebooks. - ihaskell-juicypixels v1.1.0.1
IHaskell display instances of the image types of the JuicyPixels package. - ihaskell-magic v0.3.0.1
IHaskell display instances for bytestrings. - ihaskell-plot v0.3.0.1
IHaskell display instance for Plot (from plot package). - ihaskell-widgets v0.2.3.2
IPython standard widgets for IHaskell.
- ihaskell-aeson v0.3.0.1
- hvega v0.1.0.0
Create Vega and Vega-Lite visualizations.
- ihaskell v0.9.1.0
Data-glue can be easily tested using the provided Dockerfile.
Data-glue has several system dependencies, which are: python3-pip
libgmp-dev
libmagic-dev
libtinfo-dev
libzmq3-dev
libcairo2-dev
libpango1.0-dev
These dependencies can be installed using your default package manager, like apt
, yum
, nix
, etc.
You have to install Jupyterlab, the environment in which Data-glue will live.
pip3 install jupyterlab==0.33
jupyter labextension install ihaskell_jupyterlab````
You can now clone the project:
git clone https://github.com/DataHaskell/data-glue.git
Then build the project and install the kernel to Jupyter:
stack setup
stack build && stack install
stack exec -- ihaskell install --stack
Now, you can launch an instance of JupyterLab with the Data-glue kernel with:
stack exec jupyter lab
This contains some interactive tutorials that show how Haskell can be used for typical data science workflows.
The datasets used in the tutorials came from https://archive.ics.uci.edu/ml/datasets.html and https://vincentarelbundock.github.io/Rdatasets/datasets.html.