Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add mixed precision support #46

Merged
merged 6 commits into from
Jul 29, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/install.yml
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.6, 3.7]
python-version: [ 3.6, 3.7 ]

steps:
- name: Set up Python ${{ matrix.python-version }}
Expand Down
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -9,3 +9,4 @@ siamese_nets_classifier
.coverage
*egg-info
logs
.python-version
9 changes: 6 additions & 3 deletions keras_fsl/losses/gram_matrix_losses.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,8 @@
"""
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras.losses import Loss
import tensorflow_probability as tfp
from tensorflow.keras.losses import Loss


class MeanScoreClassificationLoss(Loss):
Expand Down Expand Up @@ -70,8 +70,11 @@ def __init__(self, lower=0.0, upper=1.0, **kwargs):

def call(self, y_true, y_pred):
loss = super().call(y_true, y_pred)
clip_mask = tf.math.logical_and(-tf.math.log(1 - self.lower) < loss, loss < -tf.math.log(1 - self.upper))
return tf.cast(clip_mask, dtype=y_pred.dtype) * loss
clip_mask = tf.math.logical_and(
-tf.math.log(1 - tf.cast(self.lower, dtype=loss.dtype)) < loss,
loss < -tf.math.log(1 - tf.cast(self.upper, dtype=loss.dtype)),
)
return tf.cast(clip_mask, dtype=loss.dtype) * loss


# TODO: use reduction kwarg of loss when it becomes possible to give custom reduction to includes all other reductions below in
Expand Down
9 changes: 9 additions & 0 deletions keras_fsl/losses/tests/gram_matrix_losses_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -140,6 +140,15 @@ def test_clipped_loss_should_equal_literal_calculation(self, y_true, adjacency_m
)
np.testing.assert_almost_equal(tf_loss, np_loss, decimal=5)

@staticmethod
@pytest.mark.parametrize("dtype_policy", (tf.float16, tf.bfloat16, tf.float32, tf.float64))
def test_clipped_loss_computes_in_all_float_dtypes(dtype_policy, y_true, y_pred):
y_true_tensor = tf.convert_to_tensor(y_true)
y_pred_tensor = tf.convert_to_tensor(y_pred)
ClippedBinaryCrossentropy(lower=0.05, upper=0.95)(
tf.cast(y_true_tensor, dtype=dtype_policy), tf.cast(y_pred_tensor, dtype=dtype_policy)
)

def test_max_loss_should_equal_literal_calculation(self, y_true, adjacency_matrix, y_pred):
np_loss = np.max(-(adjacency_matrix * np.log(y_pred) + (1 - adjacency_matrix) * np.log(1 - y_pred)))
tf_loss = MaxBinaryCrossentropy()(
Expand Down
10 changes: 9 additions & 1 deletion keras_fsl/models/head_models/learnt_norms.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import numpy as np
import tensorflow as tf
from tensorflow.keras import activations
from tensorflow.keras.layers import (
Concatenate,
Expand All @@ -8,7 +9,9 @@
Input,
Reshape,
)
from tensorflow.keras.mixed_precision.experimental import global_policy
from tensorflow.keras.models import Model
from tensorflow.python.keras.layers import Activation


def LearntNorms(input_shape, use_bias=True, activation="sigmoid"):
Expand All @@ -31,6 +34,11 @@ def LearntNorms(input_shape, use_bias=True, activation="sigmoid"):
)
output = Conv2D(filters=1, kernel_size=(1, 1), activation="linear", name="norms_average", use_bias=use_bias)(output)
output = Flatten()(output)
output = Dense(1, name="raw_output", use_bias=use_bias)(output)

output = Dense(1, activation=activations.get(activation), name="output", use_bias=use_bias)(output)
global_dtype_policy = global_policy().name
if global_dtype_policy in ["mixed_float16", "mixed_bfloat16"]:
output = Activation(activations.get(activation), dtype=tf.float32, name="predictions")(output)
else:
output = Activation(activations.get(activation), name="predictions")(output)
return Model(inputs=inputs, outputs=output)
18 changes: 18 additions & 0 deletions keras_fsl/models/head_models/tests/learnt_norms_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,24 @@ def test_should_fit(self, input_shape):

learnt_norms.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1)

@parameterized.named_parameters(
("mixed_float16", "mixed_float16", "float32"),
("mixed_bfloat16", "mixed_bfloat16", "float32"),
("float32", "float32", "float32"),
("float64", "float64", "float64"),
)
def test_last_activation_fp32_in_mixed_precision(self, mixed_precision_policy, expected_last_layer_dtype_policy):
policy = tf.keras.mixed_precision.experimental.Policy(mixed_precision_policy)
tf.keras.mixed_precision.experimental.set_policy(policy)
learnt_norms = LearntNorms(input_shape=(10,))

# Check dtype policy of internal non-input layers
for layer in learnt_norms.layers[2:-1]:
assert layer._dtype_policy.name == mixed_precision_policy

# Check dtype policy of last layer always at least FP32
assert learnt_norms.layers[-1]._dtype_policy.name == expected_last_layer_dtype_policy


if __name__ == "__main__":
tf.test.main()
Loading