Skip to content

Chengyuann/Awesome-Anomalous-Sound-Detection-Methods

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

48 Commits
Β 
Β 
Β 
Β 

Repository files navigation

Awesome Maintenance PR's Welcome Survey Paper visitors

Anomalous-Sound-Detection

πŸ”– News!!!

πŸ“Œ We are actively tracking the latest research and welcome contributions to our repository and survey paper. If your studies are relevant, please feel free to contact us.

🎁 How to contribute to this repository?

Since the following content is generated based on our database, please provide the following information in the issue to help us fill in the database to add new papers (please do not submit a PR directly).

1. Paper title
2. arXiv ID (if any)
3. Publication status (if any)

Review and Count

Pub Year Datasets Note
ICASSP 2020-2024 DCASE2020 /DCASE2022
TSALP 2023 DCSASE
Applied Acoustics 2023 DCASE
ArXiv ArXiv DCASE ...
DCASE 2020-2024 DCASE
EUSIPCO 2018、2021 Sound Ideas Series 6000 General Sound Effects Library 、DCASE
ICCE 2020 MIMII
Digital Signal Processing 2023 DCASE
πŸ—‚οΈ Table of Contents
  1. πŸ“ Papers
  2. πŸ”— Other Resources
  3. ✍️ Contributing

πŸ—‚οΈ dataset

DCASE20

Download the dataset from Audio dataset.

πŸ“ Papers

ICASSP

Dual Models

  1. SW-WAVENET: Learning Representation from Spectrogram and Wavegram Using Wavenet for Anomalous Sound Detection.

    image

    H. Chen, L. Ran, X. Sun and C. Cai. ICASSP'24. πŸ”₯

  2. NOISY-ARCMIX: ADDITIVE NOISY ANGULAR MARGIN LOSS COMBINED WITH MIXUP FOR ANOMALOUS SOUND DETECTION. CODE.

    image

    Soonhyeon Choi, Jung-Woo Choi. ICASSP'24. πŸ”₯

  3. A DUAL-PATH FRAMEWORK WITH FREQUENCY-AND-TIME EXCITED NETWORK FOR ANOMALOUS SOUND DETECTION.

    image

    Yucong Zhang, Juan Liu, Yao Tian, Haifeng Liu, Ming Li. ICASSP'24. πŸ”₯

  4. Hierarchical Metadata Information Constrained Self-Supervised Learning for Anomalous Sound Detection under Domain Shift.

    image

    H. Lan, Q. Zhu, J. Guan, Y. Wei and W. Wang. ICASSP'24. πŸ”₯

  5. DP-MAE: A Dual-Path Masked Autoencoder Based Self-Supervised Learning Method for Anomalous Sound Detection.

    image

    Z. -L. Liu, Y. Song, X. -M. Zeng, L. -R. Dai and I. McLoughlin. ICASSP'24. πŸ”₯

  6. Anomalous Sound Detection Using Audio Representation with Machine ID Based Contrastive Learning Pretraining.

    image

    J. Guan, F. Xiao, Y. Liu, Q. Zhu and W. Wang. ICASSP'23. πŸ”₯

  7. Anomalous Sound Detection Using Spectral-Temporal Information Fusion. code

    image

    Youde Liu; Jian Guan; Qiaoxi Zhu; Wenwu Wang. ICASSP'22. πŸ”₯

Generative Models

  1. UNSUPERVISED ANOMALY DETECTION AND LOCALIZATION OF MACHINE AUDIO: A GAN-BASED APPROACH.

  2. [CODE]

    image

    A. Jiang, W. -Q. Zhang, Y. Deng, P. Fan and J. Liu. ICASSP'23. πŸ”₯

GMM Models

  1. Time-Weighted Frequency Domain Audio Representation with GMM Estimator for Anomalous Sound Detection.

    image

    A. Jiang, W. -Q. Zhang, Y. Deng, P. Fan and J. Liu. ICASSP'23. πŸ”₯

Other Models

  1. An Effective Anomalous Sound Detection Method Based on Representation Learning with Simulated Anomalies.

    image

    H. Chen et al. ICASSP'23. πŸ”₯

  2. Self-Supervised Representation Learning for Unsupervised Anomalous Sound Detection Under Domain Shift.

    image

    H. Chen, Y. Song, L. -R. Dai, I. McLoughlin and L. Liu. ICASSP'23. πŸ”₯

TASLP

  1. Why Do Angular Margin Losses Work Well for Semi-Supervised Anomalous Sound Detection?

    image

    HK. Wilkinghoff and F. Kurth. IEEE/ACM Transactions on Audio, Speech, and Language Processing 2023. πŸ”₯

  2. AdaProj: Adaptively Scaled Angular Margin Subspace Projections for Anomalous Sound Detection with Auxiliary Classification Tasks

    image

    Kevin Wilkinghoff. DCASE 2024. πŸ”₯

↑ Back to Top ↑

About

paper for Anomalous sound detection

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published