Skip to content

πŸ›‘οΈ SecureCard-AI: A high-performance credit card fraud detection system implemented in a Jupyter Notebook, achieving 99.97% accuracy.

License

Notifications You must be signed in to change notification settings

Camille-Maslin/SecureCard-AI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

8 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

SecureCard-AI: Credit Card Fraud Detection System πŸ›‘οΈ

Banner

Project Overview

Author: Camille Maslin
Contact:

Description: This project implements a high-performance credit card fraud detection system using advanced machine learning techniques. The model achieves 99.97% accuracy on real transaction data.

Dataset Information πŸ“Š

Source: Kaggle - Credit Card Fraud Detection Dataset 2023
Size: 57,000+ transactions

Features:

  • Transaction amount
  • Time of transaction
  • 28 anonymized features (V1-V28)
  • Target: Binary classification (Fraud/Non-Fraud)

Data Quality:

  • No missing values
  • Preprocessed and anonymized for privacy
  • Standardized numerical features
  • Reflects real-world transaction patterns

Key Features

πŸ“Š Data Analysis

  • Comprehensive data exploration
  • Advanced feature engineering
  • Robust data quality checks

πŸ“ˆ Visualizations

  • Interactive correlation matrices
  • Distribution analysis
  • Pattern recognition plots

πŸ€– Machine Learning Model

  • 99.97% accuracy rate
  • Only 18-19 errors per 57,000 transactions
  • SMOTE implementation for class balancing

πŸ“‰ Performance Metrics

  • Cross-validation scores: [0.9996 - 0.9997]
  • Balanced precision and recall
  • Minimal false positives/negatives

Technical Stack

  • 🐍 Python 3.12
  • πŸ“ Scikit-learn
  • πŸ“Š Pandas & NumPy
  • πŸ”„ Matplotlib & Seaborn
  • πŸ”„ SMOTE for imbalance handling

Installation πŸ”§

  1. Clone the repository:
$ git clone https://github.com/camille-maslin/SecureCard-AI.git
$ cd SecureCard-AI
  1. Create a virtual environment and activate it:
$ python3 -m venv venv
$ source venv/bin/activate  # Linux/MacOS
$ .\venv\Scripts\activate  # Windows
  1. Install dependencies:
$ pip install -r requirements.txt

Usage

  1. Run the Jupyter Notebook:
$ jupyter notebook
  1. Open SecureCard-AI.ipynb in your Jupyter environment.

  2. Follow the instructions and run each cell to:

    • Load data
    • Analyze and preprocess the dataset
    • Train the fraud detection model
    • Evaluate performance and visualize results

License πŸ’Ό

This project is licensed under the MIT License - see the LICENSE file for details.


Contributions πŸ› οΈ

Contributions are welcome! Please submit a pull request or open an issue for suggestions or bug reports.


Acknowledgments

  • Kaggle for the dataset.
  • Open-source libraries and contributors for tools used.

About

πŸ›‘οΈ SecureCard-AI: A high-performance credit card fraud detection system implemented in a Jupyter Notebook, achieving 99.97% accuracy.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published