Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update .ipynb format check #2

Merged
merged 7 commits into from
Feb 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion .github/workflows/test_qlib_from_source.yml
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,8 @@ jobs:

- name: Check Qlib ipynb with nbqa
run: |
nbqa black qlib
nbqa black . -l 120 --check --diff
nbqa pylint . --disable=C0104,C0114,C0115,C0116,C0301,C0302,C0411,C0413,C1802,R0401,R0801,R0902,R0903,R0911,R0912,R0913,R0914,R0915,R1720,W0105,W0123,W0201,W0511,W0613,W1113,W1514,E0401,E1121,C0103,C0209,R0402,R1705,R1710,R1725,R1735,W0102,W0212,W0221,W0223,W0231,W0237,W0612,W0621,W0622,W0703,W1309,E1102,E1136,W0719,W0104,W0404,C0412,W0611,C0410 --const-rgx='[a-z_][a-z0-9_]{2,30}$'

- name: Test data downloads
run: |
Expand Down
232 changes: 131 additions & 101 deletions examples/benchmarks/TRA/Reports.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -25,59 +25,65 @@
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"sns.set(style='white')\n",
"matplotlib.rcParams['pdf.fonttype'] = 42\n",
"matplotlib.rcParams['ps.fonttype'] = 42\n",
"\n",
"sns.set(style=\"white\")\n",
"matplotlib.rcParams[\"pdf.fonttype\"] = 42\n",
"matplotlib.rcParams[\"ps.fonttype\"] = 42\n",
"\n",
"from tqdm.auto import tqdm\n",
"from joblib import Parallel, delayed\n",
"\n",
"\n",
"def func(x, N=80):\n",
" ret = x.ret.copy()\n",
" x = x.rank(pct=True)\n",
" x['ret'] = ret\n",
" x[\"ret\"] = ret\n",
" diff = x.score.sub(x.label)\n",
" r = x.nlargest(N, columns='score').ret.mean()\n",
" r -= x.nsmallest(N, columns='score').ret.mean()\n",
" return pd.Series({\n",
" 'MSE': diff.pow(2).mean(), \n",
" 'MAE': diff.abs().mean(), \n",
" 'IC': x.score.corr(x.label),\n",
" 'R': r\n",
" })\n",
" \n",
" r = x.nlargest(N, columns=\"score\").ret.mean()\n",
" r -= x.nsmallest(N, columns=\"score\").ret.mean()\n",
" return pd.Series(\n",
" {\n",
" \"MSE\": diff.pow(2).mean(),\n",
" \"MAE\": diff.abs().mean(),\n",
" \"IC\": x.score.corr(x.label),\n",
" \"R\": r,\n",
" }\n",
" )\n",
"\n",
"\n",
"ret = pd.read_pickle(\"data/ret.pkl\").clip(-0.1, 0.1)\n",
"\n",
"\n",
"def backtest(fname, **kwargs):\n",
" pred = pd.read_pickle(fname).loc['2018-09-21':'2020-06-30'] # test period\n",
" pred['ret'] = ret\n",
" pred = pd.read_pickle(fname).loc[\"2018-09-21\":\"2020-06-30\"] # test period\n",
" pred[\"ret\"] = ret\n",
" dates = pred.index.unique(level=0)\n",
" res = Parallel(n_jobs=-1)(delayed(func)(pred.loc[d], **kwargs) for d in dates)\n",
" res = {\n",
" dates[i]: res[i]\n",
" for i in range(len(dates))\n",
" }\n",
" res = {dates[i]: res[i] for i in range(len(dates))}\n",
" res = pd.DataFrame(res).T\n",
" r = res['R'].copy()\n",
" r = res[\"R\"].copy()\n",
" r.index = pd.to_datetime(r.index)\n",
" r = r.reindex(pd.date_range(r.index[0], r.index[-1])).fillna(0) # paper use 365 days\n",
" return {\n",
" 'MSE': res['MSE'].mean(),\n",
" 'MAE': res['MAE'].mean(),\n",
" 'IC': res['IC'].mean(),\n",
" 'ICIR': res['IC'].mean()/res['IC'].std(),\n",
" 'AR': r.mean()*365,\n",
" 'AV': r.std()*365**0.5,\n",
" 'SR': r.mean()/r.std()*365**0.5,\n",
" 'MDD': (r.cumsum().cummax() - r.cumsum()).max()\n",
" \"MSE\": res[\"MSE\"].mean(),\n",
" \"MAE\": res[\"MAE\"].mean(),\n",
" \"IC\": res[\"IC\"].mean(),\n",
" \"ICIR\": res[\"IC\"].mean() / res[\"IC\"].std(),\n",
" \"AR\": r.mean() * 365,\n",
" \"AV\": r.std() * 365**0.5,\n",
" \"SR\": r.mean() / r.std() * 365**0.5,\n",
" \"MDD\": (r.cumsum().cummax() - r.cumsum()).max(),\n",
" }, r\n",
"\n",
"\n",
"def fmt(x, p=3, scale=1, std=False):\n",
" _fmt = '{:.%df}'%p\n",
" _fmt = \"{:.%df}\" % p\n",
" string = _fmt.format((x.mean() if not isinstance(x, (float, np.floating)) else x) * scale)\n",
" if std and len(x) > 1:\n",
" string += ' ('+_fmt.format(x.std()*scale)+')'\n",
" string += \" (\" + _fmt.format(x.std() * scale) + \")\"\n",
" return string\n",
"\n",
"\n",
"def backtest_multi(files, **kwargs):\n",
" res = []\n",
" pnl = []\n",
Expand All @@ -88,14 +94,14 @@
" res = pd.DataFrame(res)\n",
" pnl = pd.concat(pnl, axis=1)\n",
" return {\n",
" 'MSE': fmt(res['MSE'], std=True),\n",
" 'MAE': fmt(res['MAE'], std=True),\n",
" 'IC': fmt(res['IC']),\n",
" 'ICIR': fmt(res['ICIR']),\n",
" 'AR': fmt(res['AR'], scale=100, p=1)+'%',\n",
" 'VR': fmt(res['AV'], scale=100, p=1)+'%',\n",
" 'SR': fmt(res['SR']),\n",
" 'MDD': fmt(res['MDD'], scale=100, p=1)+'%'\n",
" \"MSE\": fmt(res[\"MSE\"], std=True),\n",
" \"MAE\": fmt(res[\"MAE\"], std=True),\n",
" \"IC\": fmt(res[\"IC\"]),\n",
" \"ICIR\": fmt(res[\"ICIR\"]),\n",
" \"AR\": fmt(res[\"AR\"], scale=100, p=1) + \"%\",\n",
" \"VR\": fmt(res[\"AV\"], scale=100, p=1) + \"%\",\n",
" \"SR\": fmt(res[\"SR\"]),\n",
" \"MDD\": fmt(res[\"MDD\"], scale=100, p=1) + \"%\",\n",
" }, pnl"
]
},
Expand Down Expand Up @@ -124,16 +130,20 @@
"outputs": [],
"source": [
"exps = {\n",
" 'Linear': ['output/Linear/pred.pkl'],\n",
" 'LightGBM': ['output/GBDT/lr0.05_leaves128/pred.pkl'],\n",
" 'MLP': glob.glob('output/search/MLP/hs128_bs512_do0.3_lr0.001_seed*/pred.pkl'),\n",
" 'SFM': glob.glob('output/search/SFM/hs32_bs512_do0.5_lr0.001_seed*/pred.pkl'),\n",
" 'ALSTM': glob.glob('output/search/LSTM_Attn/hs256_bs1024_do0.1_lr0.0002_seed*/pred.pkl'),\n",
" 'Trans.': glob.glob('output/search/Transformer/head4_hs64_bs1024_do0.1_lr0.0002_seed*/pred.pkl'),\n",
" 'ALSTM+TS':glob.glob('output/LSTM_Attn_TS/hs256_bs1024_do0.1_lr0.0002_seed*/pred.pkl'),\n",
" 'Trans.+TS':glob.glob('output/Transformer_TS/head4_hs64_bs1024_do0.1_lr0.0002_seed*/pred.pkl'),\n",
" 'ALSTM+TRA(Ours)': glob.glob('output/search/finetune/LSTM_Attn_tra/K10_traHs16_traSrcLR_TPE_traLamb2.0_hs256_bs1024_do0.1_lr0.0001_seed*/pred.pkl'),\n",
" 'Trans.+TRA(Ours)': glob.glob('output/search/finetune/Transformer_tra/K3_traHs16_traSrcLR_TPE_traLamb1.0_head4_hs64_bs512_do0.1_lr0.0005_seed*/pred.pkl')\n",
" \"Linear\": [\"output/Linear/pred.pkl\"],\n",
" \"LightGBM\": [\"output/GBDT/lr0.05_leaves128/pred.pkl\"],\n",
" \"MLP\": glob.glob(\"output/search/MLP/hs128_bs512_do0.3_lr0.001_seed*/pred.pkl\"),\n",
" \"SFM\": glob.glob(\"output/search/SFM/hs32_bs512_do0.5_lr0.001_seed*/pred.pkl\"),\n",
" \"ALSTM\": glob.glob(\"output/search/LSTM_Attn/hs256_bs1024_do0.1_lr0.0002_seed*/pred.pkl\"),\n",
" \"Trans.\": glob.glob(\"output/search/Transformer/head4_hs64_bs1024_do0.1_lr0.0002_seed*/pred.pkl\"),\n",
" \"ALSTM+TS\": glob.glob(\"output/LSTM_Attn_TS/hs256_bs1024_do0.1_lr0.0002_seed*/pred.pkl\"),\n",
" \"Trans.+TS\": glob.glob(\"output/Transformer_TS/head4_hs64_bs1024_do0.1_lr0.0002_seed*/pred.pkl\"),\n",
" \"ALSTM+TRA(Ours)\": glob.glob(\n",
" \"output/search/finetune/LSTM_Attn_tra/K10_traHs16_traSrcLR_TPE_traLamb2.0_hs256_bs1024_do0.1_lr0.0001_seed*/pred.pkl\"\n",
" ),\n",
" \"Trans.+TRA(Ours)\": glob.glob(\n",
" \"output/search/finetune/Transformer_tra/K3_traHs16_traSrcLR_TPE_traLamb1.0_head4_hs64_bs512_do0.1_lr0.0005_seed*/pred.pkl\"\n",
" ),\n",
"}"
]
},
Expand All @@ -160,14 +170,8 @@
}
],
"source": [
"res = {\n",
" name: backtest_multi(exps[name])\n",
" for name in tqdm(exps)\n",
"}\n",
"report = pd.DataFrame({\n",
" k: v[0]\n",
" for k, v in res.items()\n",
"}).T"
"res = {name: backtest_multi(exps[name]) for name in tqdm(exps)}\n",
"report = pd.DataFrame({k: v[0] for k, v in res.items()}).T"
]
},
{
Expand Down Expand Up @@ -385,24 +389,40 @@
}
],
"source": [
"df = pd.read_pickle('output/search/finetune/Transformer_tra/K3_traHs16_traSrcLR_TPE_traLamb0.0_head4_hs64_bs512_do0.1_lr0.0005_seed1000/pred.pkl')\n",
"code = 'SH600157'\n",
"date = '2018-09-28'\n",
"df = pd.read_pickle(\n",
" \"output/search/finetune/Transformer_tra/K3_traHs16_traSrcLR_TPE_traLamb0.0_head4_hs64_bs512_do0.1_lr0.0005_seed1000/pred.pkl\"\n",
")\n",
"code = \"SH600157\"\n",
"date = \"2018-09-28\"\n",
"lookbackperiod = 50\n",
"\n",
"prob = df.iloc[:, -3:].loc(axis=0)[:, code].reset_index(level=1, drop=True).loc[date:].iloc[:lookbackperiod]\n",
"pred = df.loc[:,[\"score_0\",\"score_1\",\"score_2\",\"label\"]].loc(axis=0)[:, code].reset_index(level=1, drop=True).loc[date:].iloc[:lookbackperiod]\n",
"e_all = pred.iloc[:,:-1].sub(pred.iloc[:,-1], axis=0).pow(2)\n",
"pred = (\n",
" df.loc[:, [\"score_0\", \"score_1\", \"score_2\", \"label\"]]\n",
" .loc(axis=0)[:, code]\n",
" .reset_index(level=1, drop=True)\n",
" .loc[date:]\n",
" .iloc[:lookbackperiod]\n",
")\n",
"e_all = pred.iloc[:, :-1].sub(pred.iloc[:, -1], axis=0).pow(2)\n",
"e_all = e_all.sub(e_all.min(axis=1), axis=0)\n",
"e_all.columns = [r'$\\theta_%d$'%d for d in range(1, 4)]\n",
"e_all.columns = [r\"$\\theta_%d$\" % d for d in range(1, 4)]\n",
"prob = pd.Series(np.argmax(prob.values, axis=1), index=prob.index).rolling(7).mean().round()\n",
"\n",
"fig, axes = plt.subplots(1, 2, figsize=(7, 3))\n",
"e_all.plot(ax=axes[0], xlabel='', rot=30)\n",
"prob.plot(ax=axes[1], xlabel='', rot=30, color='red', linestyle='None', marker='^', markersize=5)\n",
"e_all.plot(ax=axes[0], xlabel=\"\", rot=30)\n",
"prob.plot(\n",
" ax=axes[1],\n",
" xlabel=\"\",\n",
" rot=30,\n",
" color=\"red\",\n",
" linestyle=\"None\",\n",
" marker=\"^\",\n",
" markersize=5,\n",
")\n",
"plt.yticks(np.array([0, 1, 2]), e_all.columns.values)\n",
"axes[0].set_ylabel('Predictor Loss')\n",
"axes[1].set_ylabel('Router Selection')\n",
"axes[0].set_ylabel(\"Predictor Loss\")\n",
"axes[1].set_ylabel(\"Router Selection\")\n",
"plt.tight_layout()\n",
"# plt.savefig('select.pdf', bbox_inches='tight')\n",
"plt.show()"
Expand All @@ -428,10 +448,18 @@
"outputs": [],
"source": [
"exps = {\n",
" 'Random': glob.glob('output/search/LSTM_Attn_tra/K10_traHs16_traSrcNONE_traLamb1.0_hs256_bs1024_do0.1_lr0.0001_seed*/pred.pkl'),\n",
" 'LR': glob.glob('output/search/LSTM_Attn_tra/K10_traHs16_traSrcLR_traLamb1.0_hs256_bs1024_do0.1_lr0.0001_seed*/pred.pkl'),\n",
" 'TPE': glob.glob('output/search/LSTM_Attn_tra/K10_traHs16_traSrcTPE_traLamb1.0_hs256_bs1024_do0.1_lr0.0001_seed*/pred.pkl'),\n",
" 'LR+TPE': glob.glob('output/search/finetune/LSTM_Attn_tra/K10_traHs16_traSrcLR_TPE_traLamb2.0_hs256_bs1024_do0.1_lr0.0001_seed*/pred.pkl')\n",
" \"Random\": glob.glob(\n",
" \"output/search/LSTM_Attn_tra/K10_traHs16_traSrcNONE_traLamb1.0_hs256_bs1024_do0.1_lr0.0001_seed*/pred.pkl\"\n",
" ),\n",
" \"LR\": glob.glob(\n",
" \"output/search/LSTM_Attn_tra/K10_traHs16_traSrcLR_traLamb1.0_hs256_bs1024_do0.1_lr0.0001_seed*/pred.pkl\"\n",
" ),\n",
" \"TPE\": glob.glob(\n",
" \"output/search/LSTM_Attn_tra/K10_traHs16_traSrcTPE_traLamb1.0_hs256_bs1024_do0.1_lr0.0001_seed*/pred.pkl\"\n",
" ),\n",
" \"LR+TPE\": glob.glob(\n",
" \"output/search/finetune/LSTM_Attn_tra/K10_traHs16_traSrcLR_TPE_traLamb2.0_hs256_bs1024_do0.1_lr0.0001_seed*/pred.pkl\"\n",
" ),\n",
"}"
]
},
Expand All @@ -456,14 +484,8 @@
}
],
"source": [
"res = {\n",
" name: backtest_multi(exps[name])\n",
" for name in tqdm(exps)\n",
"}\n",
"report = pd.DataFrame({\n",
" k: v[0]\n",
" for k, v in res.items()\n",
"}).T"
"res = {name: backtest_multi(exps[name]) for name in tqdm(exps)}\n",
"report = pd.DataFrame({k: v[0] for k, v in res.items()}).T"
]
},
{
Expand Down Expand Up @@ -597,18 +619,22 @@
}
],
"source": [
"a = pd.read_pickle('output/search/finetune/Transformer_tra/K3_traHs16_traSrcLR_TPE_traLamb0.0_head4_hs64_bs512_do0.1_lr0.0005_seed3000/pred.pkl')\n",
"b = pd.read_pickle('output/search/finetune/Transformer_tra/K3_traHs16_traSrcLR_TPE_traLamb2.0_head4_hs64_bs512_do0.1_lr0.0005_seed3000/pred.pkl')\n",
"a = pd.read_pickle(\n",
" \"output/search/finetune/Transformer_tra/K3_traHs16_traSrcLR_TPE_traLamb0.0_head4_hs64_bs512_do0.1_lr0.0005_seed3000/pred.pkl\"\n",
")\n",
"b = pd.read_pickle(\n",
" \"output/search/finetune/Transformer_tra/K3_traHs16_traSrcLR_TPE_traLamb2.0_head4_hs64_bs512_do0.1_lr0.0005_seed3000/pred.pkl\"\n",
")\n",
"a = a.iloc[:, -3:]\n",
"b = b.iloc[:, -3:]\n",
"b = np.eye(3)[b.values.argmax(axis=1)]\n",
"a = np.eye(3)[a.values.argmax(axis=1)]\n",
"\n",
"res = pd.DataFrame({\n",
" 'with OT': b.sum(axis=0) / b.sum(),\n",
" 'without OT': a.sum(axis=0)/ a.sum() \n",
"},index=[r'$\\theta_1$',r'$\\theta_2$',r'$\\theta_3$'])\n",
"res.plot.bar(rot=30, figsize=(5, 4), color=['b', 'g'])\n",
"res = pd.DataFrame(\n",
" {\"with OT\": b.sum(axis=0) / b.sum(), \"without OT\": a.sum(axis=0) / a.sum()},\n",
" index=[r\"$\\theta_1$\", r\"$\\theta_2$\", r\"$\\theta_3$\"],\n",
")\n",
"res.plot.bar(rot=30, figsize=(5, 4), color=[\"b\", \"g\"])\n",
"del a, b"
]
},
Expand All @@ -633,11 +659,19 @@
"outputs": [],
"source": [
"exps = {\n",
" 'K=1': glob.glob('output/search/LSTM_Attn/hs256_bs1024_do0.1_lr0.0002_seed*/info.json'),\n",
" 'K=3': glob.glob('output/search/finetune/LSTM_Attn_tra/K3_traHs16_traSrcLR_TPE_traLamb2.0_hs256_bs1024_do0.1_lr0.0001_seed*/info.json'),\n",
" 'K=5': glob.glob('output/search/finetune/LSTM_Attn_tra/K5_traHs16_traSrcLR_TPE_traLamb2.0_hs256_bs1024_do0.1_lr0.0001_seed*/info.json'),\n",
" 'K=10': glob.glob('output/search/finetune/LSTM_Attn_tra/K10_traHs16_traSrcLR_TPE_traLamb2.0_hs256_bs1024_do0.1_lr0.0001_seed*/info.json'),\n",
" 'K=20': glob.glob('output/search/finetune/LSTM_Attn_tra/K20_traHs16_traSrcLR_TPE_traLamb2.0_hs256_bs1024_do0.1_lr0.0001_seed*/info.json')\n",
" \"K=1\": glob.glob(\"output/search/LSTM_Attn/hs256_bs1024_do0.1_lr0.0002_seed*/info.json\"),\n",
" \"K=3\": glob.glob(\n",
" \"output/search/finetune/LSTM_Attn_tra/K3_traHs16_traSrcLR_TPE_traLamb2.0_hs256_bs1024_do0.1_lr0.0001_seed*/info.json\"\n",
" ),\n",
" \"K=5\": glob.glob(\n",
" \"output/search/finetune/LSTM_Attn_tra/K5_traHs16_traSrcLR_TPE_traLamb2.0_hs256_bs1024_do0.1_lr0.0001_seed*/info.json\"\n",
" ),\n",
" \"K=10\": glob.glob(\n",
" \"output/search/finetune/LSTM_Attn_tra/K10_traHs16_traSrcLR_TPE_traLamb2.0_hs256_bs1024_do0.1_lr0.0001_seed*/info.json\"\n",
" ),\n",
" \"K=20\": glob.glob(\n",
" \"output/search/finetune/LSTM_Attn_tra/K20_traHs16_traSrcLR_TPE_traLamb2.0_hs256_bs1024_do0.1_lr0.0001_seed*/info.json\"\n",
" ),\n",
"}"
]
},
Expand All @@ -649,16 +683,11 @@
"source": [
"report = dict()\n",
"for k, v in exps.items():\n",
" \n",
" tmp = dict()\n",
" for fname in v:\n",
" with open(fname) as f:\n",
" info = json.load(f)\n",
" tmp[fname] = (\n",
" {\n",
" \"IC\":info[\"metric\"][\"IC\"],\n",
" \"MSE\":info[\"metric\"][\"MSE\"]\n",
" })\n",
" tmp[fname] = {\"IC\": info[\"metric\"][\"IC\"], \"MSE\": info[\"metric\"][\"MSE\"]}\n",
" tmp = pd.DataFrame(tmp).T\n",
" report[k] = tmp.mean()\n",
"report = pd.DataFrame(report).T"
Expand All @@ -681,13 +710,14 @@
}
],
"source": [
"fig, axes = plt.subplots(1, 2, figsize=(6,3)); axes = axes.flatten()\n",
"report['IC'].plot.bar(rot=30, ax=axes[0])\n",
"fig, axes = plt.subplots(1, 2, figsize=(6, 3))\n",
"axes = axes.flatten()\n",
"report[\"IC\"].plot.bar(rot=30, ax=axes[0])\n",
"axes[0].set_ylim(0.045, 0.062)\n",
"axes[0].set_title('IC performance')\n",
"report['MSE'].astype(float).plot.bar(rot=30, ax=axes[1], color='green')\n",
"axes[0].set_title(\"IC performance\")\n",
"report[\"MSE\"].astype(float).plot.bar(rot=30, ax=axes[1], color=\"green\")\n",
"axes[1].set_ylim(0.155, 0.1585)\n",
"axes[1].set_title('MSE performance')\n",
"axes[1].set_title(\"MSE performance\")\n",
"plt.tight_layout()\n",
"# plt.savefig('sensitivity.pdf')"
]
Expand Down
Loading