Skip to content

Reimplementation of Underwater Image Enhancement via Medium Transmission-Guided Multi-Color Space Embedding

License

Notifications You must be signed in to change notification settings

CV-Reimplementation/Ucolor-Reimplementation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ucolor-Reimplementation

Reimplementation of Underwater Image Enhancement via Medium Transmission-Guided Multi-Color Space Embedding

Edited from https://github.com/59Kkk/pytorch_Ucolor_lcy

Fixed Problems

  1. Use Kornia library for color space conversion
  2. Use accelerate to implement distributed training
  3. Fix the problem in depth map concatenation
  4. Fix nan loss

Dataset Structure

The dataset should be formatted like below

dataset/
├─ train/
│  ├─ input/
│  │  ├─ 1.jpg
│  │  ├─ ...
│  ├─ depth/
│  │  ├─ 1.jpg
│  │  ├─ ...
│  └─ target/
│     ├─ 1.jpg
│     ├─ ...
└─ test/
   ├─ input/
   │  ├─ 1.jpg
   │  ├─ ...
   ├─ depth/
   │  ├─ 1.jpg
   │  ├─ ...
   └─ target/
      ├─ 1.jpg
      ├─ ...

input folder contains underwater image

depth folder contains transmission map

target folder contains ground truth

each triplet should have the exact same name and extension

Training

You may download the dataset first, and then specify TRAIN_DIR, VAL_DIR and SAVE_DIR in the section TRAINING in config.yml.

For single GPU training:

python train.py

For multiple GPUs training:

accelerate config
accelerate launch train.py

If you have difficulties with the usage of accelerate, please refer to Accelerate.

Inference

Please first specify TRAIN_DIR, VAL_DIR and SAVE_DIR in section TESTING in config.yml.

python infer.py

About

Reimplementation of Underwater Image Enhancement via Medium Transmission-Guided Multi-Color Space Embedding

Topics

Resources

License

Stars

Watchers

Forks

Languages