We propose VDN-NeRF, a method to train neural radiance fields (NeRF) for better geometry under non-Lambertian and dynamic lighting conditions that cause significant variations in the radiance of a point when viewed from different angles.
This is the official repo for the implementation of VDN-NeRF: Resolving Shape-Radiance Ambiguity via View-Dependence Normalization.
- torch==1.8.0
- opencv_python==4.5.2.52
- trimesh==3.9.8
- numpy==1.19.2
- pyhocon==0.3.57
- icecream==2.1.0
- tqdm==4.50.2
- scipy==1.7.0
- PyMCubes==0.1.2
- Training without depth feature
python dpt_runner.py --mode train --conf ./confs/womask.conf --case <case_name> -d <image_dir>
- Training with depth feature
python dpt_runner.py --mode train --conf ./confs/womask_wdepth.conf --case <case_name> -d <image_dir>
- Extract surface from trained model
python dpt_runner.py --mode validate_mesh --conf <config_file> --case <case_name> -d <image_dir> --is_continue # use latest checkpoint
- Generate depth feature map for finetuning distillation network
python dpt_runner.py --mode getfeats_<epoch> --conf <config_file> --case <case_name> -d <image_dir> # use a specific checkpoint at epoch <epoch>
The features projected from SDF network can be found in <dataset_dir>/<case_name>/<image_dir>/depth_from_sdf
- Extract depth features from input images
cd wavelet
python predict.py --use_wavelets --normalize_input -ckpt <pre-trained checkpoint folder> -d <image_root> [-full]
Extracted features can be found in <image_root>/wavelet_feats[_full]
- Finetune the distillation network
cd wavelet
python finetune_for_vdn.py --use_wavelets --normalize_input -ckpt <pre-trained checkpoint folder> -r <dataset_root> --case <case_name> -d <image_dir> -max <feature_max>
Here feature_max
is decided by the distribution of depth_feature_map generated from trained VDN-NeRF, for latter use of normalize all the features to [0, 255]
Cite as below if you find this repository is helpful to your project:
@article{zhu2023vdn,
title={VDN-NeRF: Resolving Shape-Radiance Ambiguity via View-Dependence Normalization},
author={Zhu, Bingfan and Yang, Yanchao and Wang, Xulong and Zheng, Youyi and Guibas, Leonidas},
journal={arXiv preprint arXiv:2303.17968},
year={2023}
}
Some code snippets are borrowed from NeuS and WaveletMonoDepth. Thanks for these great projects.