Interactive Feature Localization in Deep neural networks (IFeaLiD) is a web application that allows you to visualize and explore deep neural network layers or any hyperspectral image interactively in the browser. Read the paper.
IFeaLiD is available at ifealid.cebitec.uni-bielefeld.de.
These are the examples that were presented in the paper:
-
conv2_x: https://ifealid.cebitec.uni-bielefeld.de/?d=bielefeld_000000_007186_leftImg8bit.png.C1.npz.8.zip
-
conv3_x: https://ifealid.cebitec.uni-bielefeld.de/?d=bielefeld_000000_007186_leftImg8bit.png.C2.npz.8.zip
-
conv4_x: https://ifealid.cebitec.uni-bielefeld.de/?d=bielefeld_000000_007186_leftImg8bit.png.C3.npz.8.zip
-
conv2_x: https://ifealid.cebitec.uni-bielefeld.de/?d=000000015746.jpg.C1.npz.8.zip
-
conv3_x: https://ifealid.cebitec.uni-bielefeld.de/?d=000000015746.jpg.C2.npz.8.zip
-
conv4_x: https://ifealid.cebitec.uni-bielefeld.de/?d=000000015746.jpg.C3.npz.8.zip
-
conv2_x: https://ifealid.cebitec.uni-bielefeld.de/?d=0804.png.C1.npz.8.zip
-
conv3_x: https://ifealid.cebitec.uni-bielefeld.de/?d=0804.png.C2.npz.8.zip
-
conv4_x: https://ifealid.cebitec.uni-bielefeld.de/?d=0804.png.C3.npz.8.zip
-
conv2_x: https://ifealid.cebitec.uni-bielefeld.de/?d=P0034.png.C1.npz.8.zip
-
conv3_x: https://ifealid.cebitec.uni-bielefeld.de/?d=P0034.png.C2.npz.8.zip
-
conv4_x: https://ifealid.cebitec.uni-bielefeld.de/?d=P0034.png.C3.npz.8.zip
The code that was used to extract the feature maps from ResNet101 for the examples is provided in scripts/feature-extraction
. Usage:
-
Load the submodule of the Mask R-CNN repository:
git submodule update --init
-
Install the requirements:
pip3 install -r scripts/feature-extraction/requirements.txt
-
Execute the script:
python3 scripts/feature-extraction/resnet_feature_extraction.py <target directory> <image1> <image2> ...
By default, the script extracts feature maps at five stages of ResNet101. The feature maps conv2_x, conv3_x and conv4_x correspond to the files with suffix C1.npz
, C2.npz
and C3.npz
, respectively.
The script to generate an IFeaLiD dataset ZIP file from a NumPy array can be found in scripts/zip-creator
. Usage:
-
Install the requirements:
pip3 install -r scripts/zip-creator/requirements.txt
-
Generate the feature map as NumPy array and store it as a file (see above)
-
Execute the script:
python3 scripts/zip-creator/dataset-zip-creator.py <file>
The script supports the following options:
-n
,--name
: Optional dataset name. Default is the filename of the NumPy file.-p
,--precision
: Dataset numeric precision in bits (8
,16
or32
). Default is8
.-o
,--overlay
: Optional path to the original input image. If supplied, the input image is displayed in IFeaLiD and can be blended with the heat map visualization.
Clone this repository.
- Run
npm install
- Run
npm run dev
- Open the URL shown in the terminal
- Run
npm install
- Update
base
invite.config.js
. If you are deploying tohttps://example.com/<DIR>/
, then set base to'/<DIR>/'
. If you are not deploying to a subdirectory, then set base to'/'
. - Run
npm run build
- Expose the contents of the
dist
directory to a web server.
Please cite our paper if it is helpful to your work:
@article{zurowietz2020interactive,
title={An Interactive Visualization for Feature Localization in Deep Neural Networks},
author={Zurowietz, Martin and Nattkemper, Tim Wilhelm},
journal={Frontiers in Artificial Intelligence-Machine Learning and Artificial Intelligence},
year={2020},
doi={10.3389/frai.2020.00049}
}