-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathseedclimDataCheck.r
147 lines (106 loc) · 5.78 KB
/
seedclimDataCheck.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#Search for curiosities in the turf and subturf data
#Functions (line 1 - 90)
#Examples at end of file
#turf
#find species where abs(cover change) >thresh between years
getturfcover<-function(firstyear, lastyear){
spp<-dbGetQuery(con, paste('SELECT sites.siteID, turfs.turfID, turfs.TTtreat, species, Year, cover FROM ((sites INNER JOIN (blocks INNER JOIN plots ON blocks.blockID = plots.blockID) ON sites.siteID = blocks.siteID) INNER JOIN turfs ON plots.plotID = turfs.destinationPlotID) INNER JOIN new_TurfCommunity ON turfs.turfID = new_TurfCommunity.turfID WHERE (Year = ",firstyear," OR Year=",lastyear,");', sep=""))
year1<-xtabs(cover~turfID+species, data=spp[spp$Year==firstyear,])
year2<-xtabs(cover~turfID+species, data=spp[spp$Year==lastyear,])
year1<-as.data.frame(unclass(year1))
year2<-as.data.frame(unclass(year2))
res<-list(year1, year2)
names(res)<-paste("year", c(firstyear, lastyear), sep="")
class(res)<-"turfs"
res
}
plot.turfs<-function(x, log=FALSE){
if(log)
sunflowerplot(unlist(x[[1]])+1, unlist(x[[2]])+1, xlab=names(x)[1], ylab=names(x)[2], log="xy")
else
sunflowerplot(unlist(x[[1]]), unlist(x[[2]]), xlab=names(x)[1], ylab=names(x)[2])
}
identify.turfs<-function(x){
p<-identify(unlist(x[[1]]), unlist(x[[2]]))
turfs<-rep(rownames(x[[1]]), ncol(x[[1]]))[p]
species<-rep(colnames(x[[1]]), each=nrow(x[[1]]))[p]
cbind(turfs=turfs, species=species)
}
curious<-function(x, threshold=10, margin=1){
xx<-(x[[1]]-x[[2]])
res<-apply(xx, margin,function(z)data.frame(name=dimnames(xx)[[margin*-1+3]],difference=z)[which(abs(z)>threshold),,drop=FALSE])
res[sapply(res,nrow)==0]<-NULL
res
}
#subplot
#find species where abs(no subplots occupied) >thresh between years
getsubturfcount<-function(firstyear, lastyear, site){
spp<-dbGetQuery(con, paste('SELECT sites.siteID, turfs.turfID, turfs.TTtreat, species, Year, Count(subturf) as nsubturf FROM ((sites INNER JOIN (blocks INNER JOIN plots ON blocks.blockID = plots.blockID) ON sites.siteID = blocks.siteID) INNER JOIN turfs ON plots.plotID = turfs.destinationPlotID) INNER JOIN newSubTurfCommunity ON turfs.turfID = newSubTurfCommunity.turfID GROUP BY sites.siteID, turfs.turfID, turfs.TTtreat, species, Year HAVING (Year=",firstyear," OR Year=",lastyear,");', sep=""))
print(names(spp))
if(missing(site))keep<-TRUE
else keep<-spp$siteID==site
year1<-xtabs(nsubturf~turfID+species, data=spp[spp$Year==firstyear&keep,])
year2<-xtabs(nsubturf~turfID+species, data=spp[spp$Year==lastyear&keep,])
year1<-as.data.frame(unclass(year1))
year2<-as.data.frame(unclass(year2))
res<-list(year1, year2)
names(res)<-paste("year", c(firstyear, lastyear), sep="")
class(res)<-"subturfcount"
class(res)<-"turfs"
res
}
#subplotmap
getsubturfspecies<-function(turf, year, species){
subturfsp<-dbGetQuery(con, paste('SELECT sites.siteID, turfs.turfID, turfs.TTtreat, species, Year, subturf, seedlings, juvenile,adult, fertile, vegetative, dominant, cf FROM ((sites INNER JOIN (blocks INNER JOIN plots ON blocks.blockID = plots.blockID) ON sites.siteID = blocks.siteID) INNER JOIN turfs ON plots.plotID = turfs.destinationPlotID) INNER JOIN newSubTurfCommunity ON turfs.turfID = newSubTurfCommunity.turfID where Year=",year," AND turfs.turfID=",turf," AND species=",species," ORDER BY subturf ASC;', sep=""))
class(subturfsp)<-c("subturfsp","data.frame")
subturfsp
}
plot.subturfsp<-function(x){
plot(NA, xlim=c(0,1), ylim=c(0,1), ann=F, axes=FALSE, xaxs="i", yaxs="i")
abline(v=seq(0,1,.2), h=seq(0,1,.2))
text(as.matrix(expand.grid(seq(.1,.9,.2), seq(.9,.1,-.2)+.05)), labels=1:25, col="grey60")
box()
with(x,{
title(main=paste(siteID[1]," ", turfID[1], " ",Year[1], " ",species[1]))
lab=rep("",nrow(x))
lab<-paste(lab,ifelse(seedlings>0, paste("Sx", seedlings, sep=""),""), sep="")
lab<-paste(lab,ifelse(juvenile>0, paste(" Jx",juvenile,sep=""), ""), sep="")
lab<-paste(lab,ifelse(adult==1, " A", ""), sep="")
lab<-paste(lab,ifelse(fertile==1, " F", ""), sep="")
lab<-paste(lab,ifelse(vegetative==1, " V", ""), sep="")
lab<-paste(lab,ifelse(dominant==1, " D", ""), sep="")
lab<-paste(lab,ifelse(cf==1, " cf", ""), sep="")
labels=rep("",25)
labels[subturf]<-lab
text(as.matrix(expand.grid(seq(.1,.9,.2), seq(.9,.1,-.2)-.05)), labels=labels)
})
}
########################################################################
#Examples
#connect to database
db<-file.choose()#uncomment this line and select database in dialog box
db<-"o:\\data\\seedclim2014\\seedclim_2014-2-25.mdb"#edit this line with correct location
con<-odbcConnectAccess2007(db)
sqlTables(con)
cover1213<-getturfcover(2015,2016)
x11()
plot(cover1213)#plot of cover in last year against first year
identify(cover1213)#click points of interest, then "stop" button button at top of figure. NB will only find first of overlaying points.
curious(cover1213, threshold=40, margin=1) #margin=1 to group by turfs, 2 to group by species
counts1213<-getsubturfcount(2012,2013)
plot(counts1213)
identify(counts1213)
curious(counts1213, threshold=20, margin=1)#margin=1 to group by turfs, 2 to group by species
sapply(c("Ulvhaugen","Lavisdalen","Gudmedalen","Skjellingahaugen","Alrust","Hogsete","Rambera","Veskre","Fauske","Vikesland","Arhelleren","Ovstedal"), function(n){
x11()
counts1213<-getsubturfcount(2012,2013, n)
plot(counts1213)
title(main=n)
})
getsubturfspecies(turf="92 tt1 93", year=2012, species="Car.nig")
x11();plot(getsubturfspecies(turf="92 tt1 93", year=2012, species="Car.nig"))
getsubturfspecies(turf="Fau3RTC", year=2013, species="Tri.sp")
x11();plot(getsubturfspecies(turf="73 TTC", year=2013, species="Alc.sp"))
counts1112<-getsubturfcount(2011,2012)
curious(counts1112, threshold=10, margin=1)#margin=1 to group by turfs, 2 to group by species
close(con)