Skip to content

BYU-PCCL/information-theoretic-prompts

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

information-theoretic-prompts

Overview

This is a companion repository to the paper "An Information-Theoretic Approach to Prompt Engineering". This includes examples for how to

Setup

To clone repo, run:

git clone git@github.com:tsor13/information-theoretic-prompts.git

Authors

This code is provided by the authors. For any questions, please reach out to Taylor Sorensen at tsor1313@gmail.com.

Usage

To generate your own experiment for comparing prompt templates with mutual information, run

python3 run_experiment.py --dataset squad --n 64 --seed 0 --lm_model 'gpt2-xl'

The following are the available arguments, although we hope that the code was written in such a way so that the code could be extended to other datasets and models easily.

Supported arguments:

Accepts argparse arguments:
    --dataset: the dataset to use. Accepted: imdb. Default: squad
    --n: the number of rows to use from the dataset. Default: 64
    --seed: the seed to use for the dataset. Default: 0
    --lm_model: the language model to use. Supported models:
        - GPT-3: 'gpt3-ada', 'gpt3-babbage', 'gpt3-curie', 'gpt3-davinci', 'ada', 'babbage', 'curie', 'davinci'
        - GPT-2: 'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl', 'distilgpt2'
        - GPT-J: 'EleutherAI/gpt-j-6B'
        - GPT-Neo: 'EleutherAI/gpt-neo-2.7B', 'EleutherAI/gpt-neo-1.3B', 'EleutherAI/gpt-neo-125M'
        - Jurassic: 'j1-jumbo', 'j1-large'
        Default: 'gpt2-xl'

Docker

If you would like to run it in a docker container, there is a dockerfile and command arguments provided. From the parent directory,

cd docker
sh build.sh
sh run.sh

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages