Skip to content

Commit

Permalink
Test-AzTemplate: Skipping nested templates for prereqs (#690)
Browse files Browse the repository at this point in the history
* Test-AzTemplate:  Skipping nested templates for prereq,parameters, and CreateUIDefinition (because they cannot have them) (Fixes #686, makes #680 more quiet)

* Adding Test Directory for JSONFiles-Should-Be-Valid (re #686)

* Delete prereq.azuredeploy.parameters.json

* Delete azuredeploy.parameters.json

* Delete .settings.json

Co-authored-by: James Brundage <@github.com>
Co-authored-by: Brian Moore <bmoore@microsoft.com>
  • Loading branch information
StartAutomating and bmoore-msft authored Sep 26, 2022
1 parent 63c6a0c commit 7d04d32
Show file tree
Hide file tree
Showing 4 changed files with 576 additions and 3 deletions.
16 changes: 13 additions & 3 deletions arm-ttk/Test-AzTemplate.ps1
Original file line number Diff line number Diff line change
Expand Up @@ -424,11 +424,13 @@ Each test script has access to a set of well-known variables:
}
}

if ($testOut.InnerTemplateLocation) {
if ($testOut.InnerTemplateLocation -and $location) {
$location.Line += $testOut.InnerTemplateLocation.Line - 1
}

$testOut | Add-Member NoteProperty Location $location -Force
if ($location) {
$testOut | Add-Member NoteProperty Location $location -Force
}
}
}
elseif ($testOut -is [Management.Automation.WarningRecord]) {
Expand Down Expand Up @@ -565,12 +567,20 @@ Each test script has access to a set of well-known variables:
$templateFileName = $fileInfo.Name
$TemplateObject = $fileInfo.Object
$TemplateText = $fileInfo.Text
# If the file had inner templates
if ($fileInfo.InnerTemplates) {
# use the inner templates from just this file
$InnerTemplates = $fileInfo.InnerTemplates
$InnerTemplatesText = $fileInfo.InnerTemplatesText
$InnerTemplatesNames = $fileInfo.InnerTemplatesNames
$innerTemplatesLocations = $fileInfo.InnerTemplatesLocations
} else {
}
elseif ($fileInfo.Name -match '^(?>parameters|prereq|CreateUIDefinition)\.') {
$InnerTemplates, $InnerTemplateText, $InnerTemplatesNames, $innerTemplatesLocations = $null
}
else
{
# Otherwise, use the inner templates from the main file
$InnerTemplates = $mainInnerTemplates
$InnerTemplatesText = $mainInnerTemplatesText
$InnerTemplatesNames = $MainInnerTemplatesNames
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@

#requires -module arm-ttk
. $PSScriptRoot\..\arm-ttk.test.functions.ps1
Test-TTK $psScriptRoot
return

338 changes: 338 additions & 0 deletions unit-tests/JSONFiles-Should-Be-Valid/Pass/azuredeploy.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,338 @@
{
"$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"metadata": {
"_generator": {
"name": "bicep",
"version": "0.10.61.36676",
"templateHash": "4722508883802150279"
}
},
"parameters": {
"location": {
"type": "string",
"defaultValue": "[resourceGroup().location]",
"metadata": {
"description": "Specifies the location for all resources."
}
},
"workspaceName": {
"type": "string",
"metadata": {
"description": "Specifies the name of the Azure Machine Learning workspace where sweep job will be deployed"
}
},
"jobName": {
"type": "string",
"metadata": {
"description": "Specifies the unique name for sweep job."
}
},
"computeName": {
"type": "string",
"metadata": {
"description": "Specifies the name of the Azure Machine Learning amlcompute cluster on which job will be run."
}
},
"storageAccountName": {
"type": "string",
"metadata": {
"description": "The name for the storage account to created and associated with the workspace."
}
},
"experimentName": {
"type": "string",
"metadata": {
"description": "Specifies the name of the Azure Machine Learning experiment under which job will be created."
}
},
"_artifactsLocation": {
"type": "string",
"defaultValue": "[deployment().properties.templateLink.uri]",
"metadata": {
"description": "The base URI where artifacts required by this template are located including a trailing '/'."
}
},
"_artifactsLocationSasToken": {
"type": "secureString",
"defaultValue": "",
"metadata": {
"description": "The sasToken required to access _artifactsLocation."
}
},
"inputs": {
"type": "object",
"defaultValue": {
"iris_csv": {
"mode": "ReadOnlyMount",
"uri": "[uri(parameters('_artifactsLocation'), format('data/iris.csv{0}', parameters('_artifactsLocationSasToken')))]",
"jobInputType": "uri_file"
}
},
"metadata": {
"description": "Specifies dictionary of inputs search for sweep job."
}
},
"limits": {
"type": "object",
"defaultValue": {
"jobLimitsType": "Sweep",
"timeout": "PT20M",
"trialTimeout": "PT50S",
"maxConcurrentTrials": 3,
"maxTotalTrials": 5
},
"metadata": {
"description": "Specifies execution contraints for sweep job."
}
},
"objective": {
"type": "object",
"defaultValue": {
"goal": "maximize",
"primaryMetric": "result"
},
"metadata": {
"description": "Specifies objective for sweep job."
}
},
"samplingAlgorithmType": {
"type": "string",
"defaultValue": "Random",
"metadata": {
"description": "Specifies sampling algorithm for sweep job."
}
},
"searchSpace": {
"type": "object",
"defaultValue": {
"learning_rate": [
"uniform",
[
"[json('0.01')]",
"[json('0.9')]"
]
],
"boosting": [
"choice",
[
[
"gbdt",
"dart"
]
]
]
},
"metadata": {
"description": "Specifies different search space for sweep job."
}
},
"command": {
"type": "string",
"defaultValue": "python main.py --iris-csv ${{inputs.iris_csv}} --learning-rate ${{search_space.learning_rate}} --boosting ${{search_space.boosting}}",
"metadata": {
"description": "Specifies command to be executed by trials of sweep job."
}
},
"environmentName": {
"type": "string",
"defaultValue": "AzureML-lightgbm-3.2-ubuntu18.04-py37-cpu",
"metadata": {
"description": "Specifies the curated environment to run sweep job."
}
}
},
"resources": [
{
"type": "Microsoft.MachineLearningServices/workspaces/jobs",
"apiVersion": "2022-06-01-preview",
"name": "[format('{0}/{1}', parameters('workspaceName'), parameters('jobName'))]",
"properties": {
"description": "Sweep Job Resource from ARM Template",
"properties": {},
"tags": {
"referenceNotebook": "https://github.com/Azure/azureml-examples/blob/main/sdk/jobs/single-step/lightgbm/iris/lightgbm-iris-sweep.ipynb"
},
"computeId": "[resourceId('Microsoft.MachineLearningServices/workspaces/computes', parameters('workspaceName'), parameters('computeName'))]",
"displayName": "Sweep Job Resource",
"experimentName": "[parameters('experimentName')]",
"isArchived": false,
"jobType": "Sweep",
"inputs": "[parameters('inputs')]",
"limits": "[parameters('limits')]",
"objective": "[parameters('objective')]",
"samplingAlgorithm": {
"samplingAlgorithmType": "[parameters('samplingAlgorithmType')]"
},
"searchSpace": "[parameters('searchSpace')]",
"trial": {
"codeId": "[reference(resourceId('Microsoft.Resources/deployments', 'blob')).outputs.codeId.value]",
"command": "[parameters('command')]",
"environmentId": "[resourceId('Microsoft.MachineLearningServices/workspaces/environments/versions', parameters('workspaceName'), parameters('environmentName'), reference(resourceId('Microsoft.MachineLearningServices/workspaces/environments', split(format('{0}/{1}', parameters('workspaceName'), parameters('environmentName')), '/')[0], split(format('{0}/{1}', parameters('workspaceName'), parameters('environmentName')), '/')[1]), '2022-05-01').latestVersion)]",
"environmentVariables": {}
}
},
"dependsOn": [
"[resourceId('Microsoft.Resources/deployments', 'blob')]"
]
},
{
"type": "Microsoft.Resources/deployments",
"apiVersion": "2020-10-01",
"name": "blob",
"properties": {
"expressionEvaluationOptions": {
"scope": "inner"
},
"mode": "Incremental",
"parameters": {
"location": {
"value": "[parameters('location')]"
},
"workspaceName": {
"value": "[parameters('workspaceName')]"
},
"storageAccountName": {
"value": "[parameters('storageAccountName')]"
}
},
"template": {
"$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"metadata": {
"_generator": {
"name": "bicep",
"version": "0.10.61.36676",
"templateHash": "17993837818224864413"
}
},
"parameters": {
"workspaceName": {
"type": "string",
"metadata": {
"description": "Specifies the name of the Azure Machine Learning workspace where sweep job will be deployed"
}
},
"filename": {
"type": "string",
"defaultValue": "main.py",
"metadata": {
"description": "Name of the blob as it is stored in the blob container"
}
},
"containerName": {
"type": "string",
"defaultValue": "hdscript",
"metadata": {
"description": "Name of the blob container"
}
},
"location": {
"type": "string",
"defaultValue": "[resourceGroup().location]",
"metadata": {
"description": "Azure region where resources should be deployed"
}
},
"storageAccountName": {
"type": "string",
"metadata": {
"description": "Desired name of the storage account"
}
},
"codeVersion": {
"type": "string",
"defaultValue": "1",
"metadata": {
"description": "Specifies the env version for sweep job."
}
},
"codeId": {
"type": "string",
"defaultValue": "code",
"metadata": {
"description": "Specifies the env for sweep job."
}
}
},
"variables": {
"$fxv#0": "# imports\r\nimport os\r\nimport mlflow\r\nimport argparse\r\n\r\nimport pandas as pd\r\nimport lightgbm as lgbm\r\nimport matplotlib.pyplot as plt\r\n\r\nfrom sklearn.metrics import log_loss, accuracy_score\r\nfrom sklearn.preprocessing import LabelEncoder\r\nfrom sklearn.model_selection import train_test_split\r\n\r\n# define functions\r\ndef main(args):\r\n # enable auto logging\r\n mlflow.autolog()\r\n\r\n # setup parameters\r\n num_boost_round = args.num_boost_round\r\n params = {\r\n \"objective\": \"multiclass\",\r\n \"num_class\": 3,\r\n \"boosting\": args.boosting,\r\n \"num_iterations\": args.num_iterations,\r\n \"num_leaves\": args.num_leaves,\r\n \"num_threads\": args.num_threads,\r\n \"learning_rate\": args.learning_rate,\r\n \"metric\": args.metric,\r\n \"seed\": args.seed,\r\n \"verbose\": args.verbose,\r\n }\r\n\r\n # read in data\r\n df = pd.read_csv(args.iris_csv)\r\n\r\n # process data\r\n X_train, X_test, y_train, y_test, enc = process_data(df)\r\n\r\n # train model\r\n model = train_model(params, num_boost_round, X_train, X_test, y_train, y_test)\r\n\r\n\r\ndef process_data(df):\r\n # split dataframe into X and y\r\n X = df.drop([\"species\"], axis=1)\r\n y = df[\"species\"]\r\n\r\n # encode label\r\n enc = LabelEncoder()\r\n y = enc.fit_transform(y)\r\n\r\n # train/test split\r\n X_train, X_test, y_train, y_test = train_test_split(\r\n X, y, test_size=0.2, random_state=42\r\n )\r\n\r\n # return splits and encoder\r\n return X_train, X_test, y_train, y_test, enc\r\n\r\n\r\ndef train_model(params, num_boost_round, X_train, X_test, y_train, y_test):\r\n # create lightgbm datasets\r\n train_data = lgbm.Dataset(X_train, label=y_train)\r\n test_data = lgbm.Dataset(X_test, label=y_test)\r\n\r\n # train model\r\n model = lgbm.train(\r\n params,\r\n train_data,\r\n num_boost_round=num_boost_round,\r\n valid_sets=[test_data],\r\n valid_names=[\"test\"],\r\n )\r\n\r\n # return model\r\n return model\r\n\r\n\r\ndef parse_args():\r\n # setup arg parser\r\n parser = argparse.ArgumentParser()\r\n\r\n # add arguments\r\n parser.add_argument(\"--iris-csv\", type=str)\r\n parser.add_argument(\"--num-boost-round\", type=int, default=10)\r\n parser.add_argument(\"--boosting\", type=str, default=\"gbdt\")\r\n parser.add_argument(\"--num-iterations\", type=int, default=16)\r\n parser.add_argument(\"--num-leaves\", type=int, default=31)\r\n parser.add_argument(\"--num-threads\", type=int, default=0)\r\n parser.add_argument(\"--learning-rate\", type=float, default=0.1)\r\n parser.add_argument(\"--metric\", type=str, default=\"multi_logloss\")\r\n parser.add_argument(\"--seed\", type=int, default=42)\r\n parser.add_argument(\"--verbose\", type=int, default=0)\r\n\r\n # parse args\r\n args = parser.parse_args()\r\n\r\n # return args\r\n return args\r\n\r\n\r\n# run script\r\nif __name__ == \"__main__\":\r\n # parse args\r\n args = parse_args()\r\n\r\n # run main function\r\n main(args)"
},
"resources": [
{
"type": "Microsoft.Storage/storageAccounts/blobServices/containers",
"apiVersion": "2021-04-01",
"name": "[format('{0}/{1}/{2}', parameters('storageAccountName'), 'default', parameters('containerName'))]",
"properties": {
"publicAccess": "Container"
},
"dependsOn": [
"[resourceId('Microsoft.Storage/storageAccounts/blobServices', parameters('storageAccountName'), 'default')]"
]
},
{
"type": "Microsoft.Storage/storageAccounts/blobServices",
"apiVersion": "2021-04-01",
"name": "[format('{0}/{1}', parameters('storageAccountName'), 'default')]"
},
{
"type": "Microsoft.Resources/deploymentScripts",
"apiVersion": "2020-10-01",
"name": "[format('deployscript-upload-blob-{0}', uniqueString(resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))))]",
"location": "[parameters('location')]",
"kind": "AzureCLI",
"properties": {
"azCliVersion": "2.26.1",
"timeout": "PT5M",
"retentionInterval": "PT1H",
"environmentVariables": [
{
"name": "AZURE_STORAGE_ACCOUNT",
"value": "[parameters('storageAccountName')]"
},
{
"name": "AZURE_STORAGE_KEY",
"secureValue": "[listKeys(resourceId('Microsoft.Storage/storageAccounts', parameters('storageAccountName')), '2021-04-01').keys[0].value]"
},
{
"name": "CONTENT",
"value": "[variables('$fxv#0')]"
}
],
"scriptContent": "[format('echo \"$CONTENT\" > {0} && az storage blob upload -f {1} -c {2} -n {3}', parameters('filename'), parameters('filename'), parameters('containerName'), parameters('filename'))]"
},
"dependsOn": [
"[resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))]"
]
},
{
"type": "Microsoft.MachineLearningServices/workspaces/codes/versions",
"apiVersion": "2022-05-01",
"name": "[format('{0}/{1}-{2}/{3}', parameters('workspaceName'), parameters('codeId'), uniqueString(resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))), parameters('codeVersion'))]",
"properties": {
"codeUri": "[uri(format('https://{0}.blob.{1}/', parameters('storageAccountName'), environment().suffixes.storage), format('{0}/', parameters('containerName')))]",
"isAnonymous": false
},
"dependsOn": [
"[resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))]",
"[resourceId('Microsoft.Resources/deploymentScripts', format('deployscript-upload-blob-{0}', uniqueString(resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName')))))]"
]
}
],
"outputs": {
"codeId": {
"type": "string",
"value": "[resourceId('Microsoft.MachineLearningServices/workspaces/codes/versions', split(format('{0}/{1}-{2}/{3}', parameters('workspaceName'), parameters('codeId'), uniqueString(resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))), parameters('codeVersion')), '/')[0], split(format('{0}/{1}-{2}/{3}', parameters('workspaceName'), parameters('codeId'), uniqueString(resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))), parameters('codeVersion')), '/')[1], split(format('{0}/{1}-{2}/{3}', parameters('workspaceName'), parameters('codeId'), uniqueString(resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))), parameters('codeVersion')), '/')[2])]"
}
}
}
}
}
],
"outputs": {
"Job_Studio_Endpoint": {
"type": "string",
"value": "[reference(resourceId('Microsoft.MachineLearningServices/workspaces/jobs', split(format('{0}/{1}', parameters('workspaceName'), parameters('jobName')), '/')[0], split(format('{0}/{1}', parameters('workspaceName'), parameters('jobName')), '/')[1])).services.Studio.endpoint]"
}
}
}
Loading

0 comments on commit 7d04d32

Please sign in to comment.