-
Notifications
You must be signed in to change notification settings - Fork 193
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Test-AzTemplate: Skipping nested templates for prereqs (#690)
* Test-AzTemplate: Skipping nested templates for prereq,parameters, and CreateUIDefinition (because they cannot have them) (Fixes #686, makes #680 more quiet) * Adding Test Directory for JSONFiles-Should-Be-Valid (re #686) * Delete prereq.azuredeploy.parameters.json * Delete azuredeploy.parameters.json * Delete .settings.json Co-authored-by: James Brundage <@github.com> Co-authored-by: Brian Moore <bmoore@microsoft.com>
- Loading branch information
1 parent
63c6a0c
commit 7d04d32
Showing
4 changed files
with
576 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
6 changes: 6 additions & 0 deletions
6
unit-tests/JSONFiles-Should-Be-Valid/JSONFiles-Should-Be-Valid.tests.ps1
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
|
||
#requires -module arm-ttk | ||
. $PSScriptRoot\..\arm-ttk.test.functions.ps1 | ||
Test-TTK $psScriptRoot | ||
return | ||
|
338 changes: 338 additions & 0 deletions
338
unit-tests/JSONFiles-Should-Be-Valid/Pass/azuredeploy.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,338 @@ | ||
{ | ||
"$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#", | ||
"contentVersion": "1.0.0.0", | ||
"metadata": { | ||
"_generator": { | ||
"name": "bicep", | ||
"version": "0.10.61.36676", | ||
"templateHash": "4722508883802150279" | ||
} | ||
}, | ||
"parameters": { | ||
"location": { | ||
"type": "string", | ||
"defaultValue": "[resourceGroup().location]", | ||
"metadata": { | ||
"description": "Specifies the location for all resources." | ||
} | ||
}, | ||
"workspaceName": { | ||
"type": "string", | ||
"metadata": { | ||
"description": "Specifies the name of the Azure Machine Learning workspace where sweep job will be deployed" | ||
} | ||
}, | ||
"jobName": { | ||
"type": "string", | ||
"metadata": { | ||
"description": "Specifies the unique name for sweep job." | ||
} | ||
}, | ||
"computeName": { | ||
"type": "string", | ||
"metadata": { | ||
"description": "Specifies the name of the Azure Machine Learning amlcompute cluster on which job will be run." | ||
} | ||
}, | ||
"storageAccountName": { | ||
"type": "string", | ||
"metadata": { | ||
"description": "The name for the storage account to created and associated with the workspace." | ||
} | ||
}, | ||
"experimentName": { | ||
"type": "string", | ||
"metadata": { | ||
"description": "Specifies the name of the Azure Machine Learning experiment under which job will be created." | ||
} | ||
}, | ||
"_artifactsLocation": { | ||
"type": "string", | ||
"defaultValue": "[deployment().properties.templateLink.uri]", | ||
"metadata": { | ||
"description": "The base URI where artifacts required by this template are located including a trailing '/'." | ||
} | ||
}, | ||
"_artifactsLocationSasToken": { | ||
"type": "secureString", | ||
"defaultValue": "", | ||
"metadata": { | ||
"description": "The sasToken required to access _artifactsLocation." | ||
} | ||
}, | ||
"inputs": { | ||
"type": "object", | ||
"defaultValue": { | ||
"iris_csv": { | ||
"mode": "ReadOnlyMount", | ||
"uri": "[uri(parameters('_artifactsLocation'), format('data/iris.csv{0}', parameters('_artifactsLocationSasToken')))]", | ||
"jobInputType": "uri_file" | ||
} | ||
}, | ||
"metadata": { | ||
"description": "Specifies dictionary of inputs search for sweep job." | ||
} | ||
}, | ||
"limits": { | ||
"type": "object", | ||
"defaultValue": { | ||
"jobLimitsType": "Sweep", | ||
"timeout": "PT20M", | ||
"trialTimeout": "PT50S", | ||
"maxConcurrentTrials": 3, | ||
"maxTotalTrials": 5 | ||
}, | ||
"metadata": { | ||
"description": "Specifies execution contraints for sweep job." | ||
} | ||
}, | ||
"objective": { | ||
"type": "object", | ||
"defaultValue": { | ||
"goal": "maximize", | ||
"primaryMetric": "result" | ||
}, | ||
"metadata": { | ||
"description": "Specifies objective for sweep job." | ||
} | ||
}, | ||
"samplingAlgorithmType": { | ||
"type": "string", | ||
"defaultValue": "Random", | ||
"metadata": { | ||
"description": "Specifies sampling algorithm for sweep job." | ||
} | ||
}, | ||
"searchSpace": { | ||
"type": "object", | ||
"defaultValue": { | ||
"learning_rate": [ | ||
"uniform", | ||
[ | ||
"[json('0.01')]", | ||
"[json('0.9')]" | ||
] | ||
], | ||
"boosting": [ | ||
"choice", | ||
[ | ||
[ | ||
"gbdt", | ||
"dart" | ||
] | ||
] | ||
] | ||
}, | ||
"metadata": { | ||
"description": "Specifies different search space for sweep job." | ||
} | ||
}, | ||
"command": { | ||
"type": "string", | ||
"defaultValue": "python main.py --iris-csv ${{inputs.iris_csv}} --learning-rate ${{search_space.learning_rate}} --boosting ${{search_space.boosting}}", | ||
"metadata": { | ||
"description": "Specifies command to be executed by trials of sweep job." | ||
} | ||
}, | ||
"environmentName": { | ||
"type": "string", | ||
"defaultValue": "AzureML-lightgbm-3.2-ubuntu18.04-py37-cpu", | ||
"metadata": { | ||
"description": "Specifies the curated environment to run sweep job." | ||
} | ||
} | ||
}, | ||
"resources": [ | ||
{ | ||
"type": "Microsoft.MachineLearningServices/workspaces/jobs", | ||
"apiVersion": "2022-06-01-preview", | ||
"name": "[format('{0}/{1}', parameters('workspaceName'), parameters('jobName'))]", | ||
"properties": { | ||
"description": "Sweep Job Resource from ARM Template", | ||
"properties": {}, | ||
"tags": { | ||
"referenceNotebook": "https://github.com/Azure/azureml-examples/blob/main/sdk/jobs/single-step/lightgbm/iris/lightgbm-iris-sweep.ipynb" | ||
}, | ||
"computeId": "[resourceId('Microsoft.MachineLearningServices/workspaces/computes', parameters('workspaceName'), parameters('computeName'))]", | ||
"displayName": "Sweep Job Resource", | ||
"experimentName": "[parameters('experimentName')]", | ||
"isArchived": false, | ||
"jobType": "Sweep", | ||
"inputs": "[parameters('inputs')]", | ||
"limits": "[parameters('limits')]", | ||
"objective": "[parameters('objective')]", | ||
"samplingAlgorithm": { | ||
"samplingAlgorithmType": "[parameters('samplingAlgorithmType')]" | ||
}, | ||
"searchSpace": "[parameters('searchSpace')]", | ||
"trial": { | ||
"codeId": "[reference(resourceId('Microsoft.Resources/deployments', 'blob')).outputs.codeId.value]", | ||
"command": "[parameters('command')]", | ||
"environmentId": "[resourceId('Microsoft.MachineLearningServices/workspaces/environments/versions', parameters('workspaceName'), parameters('environmentName'), reference(resourceId('Microsoft.MachineLearningServices/workspaces/environments', split(format('{0}/{1}', parameters('workspaceName'), parameters('environmentName')), '/')[0], split(format('{0}/{1}', parameters('workspaceName'), parameters('environmentName')), '/')[1]), '2022-05-01').latestVersion)]", | ||
"environmentVariables": {} | ||
} | ||
}, | ||
"dependsOn": [ | ||
"[resourceId('Microsoft.Resources/deployments', 'blob')]" | ||
] | ||
}, | ||
{ | ||
"type": "Microsoft.Resources/deployments", | ||
"apiVersion": "2020-10-01", | ||
"name": "blob", | ||
"properties": { | ||
"expressionEvaluationOptions": { | ||
"scope": "inner" | ||
}, | ||
"mode": "Incremental", | ||
"parameters": { | ||
"location": { | ||
"value": "[parameters('location')]" | ||
}, | ||
"workspaceName": { | ||
"value": "[parameters('workspaceName')]" | ||
}, | ||
"storageAccountName": { | ||
"value": "[parameters('storageAccountName')]" | ||
} | ||
}, | ||
"template": { | ||
"$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#", | ||
"contentVersion": "1.0.0.0", | ||
"metadata": { | ||
"_generator": { | ||
"name": "bicep", | ||
"version": "0.10.61.36676", | ||
"templateHash": "17993837818224864413" | ||
} | ||
}, | ||
"parameters": { | ||
"workspaceName": { | ||
"type": "string", | ||
"metadata": { | ||
"description": "Specifies the name of the Azure Machine Learning workspace where sweep job will be deployed" | ||
} | ||
}, | ||
"filename": { | ||
"type": "string", | ||
"defaultValue": "main.py", | ||
"metadata": { | ||
"description": "Name of the blob as it is stored in the blob container" | ||
} | ||
}, | ||
"containerName": { | ||
"type": "string", | ||
"defaultValue": "hdscript", | ||
"metadata": { | ||
"description": "Name of the blob container" | ||
} | ||
}, | ||
"location": { | ||
"type": "string", | ||
"defaultValue": "[resourceGroup().location]", | ||
"metadata": { | ||
"description": "Azure region where resources should be deployed" | ||
} | ||
}, | ||
"storageAccountName": { | ||
"type": "string", | ||
"metadata": { | ||
"description": "Desired name of the storage account" | ||
} | ||
}, | ||
"codeVersion": { | ||
"type": "string", | ||
"defaultValue": "1", | ||
"metadata": { | ||
"description": "Specifies the env version for sweep job." | ||
} | ||
}, | ||
"codeId": { | ||
"type": "string", | ||
"defaultValue": "code", | ||
"metadata": { | ||
"description": "Specifies the env for sweep job." | ||
} | ||
} | ||
}, | ||
"variables": { | ||
"$fxv#0": "# imports\r\nimport os\r\nimport mlflow\r\nimport argparse\r\n\r\nimport pandas as pd\r\nimport lightgbm as lgbm\r\nimport matplotlib.pyplot as plt\r\n\r\nfrom sklearn.metrics import log_loss, accuracy_score\r\nfrom sklearn.preprocessing import LabelEncoder\r\nfrom sklearn.model_selection import train_test_split\r\n\r\n# define functions\r\ndef main(args):\r\n # enable auto logging\r\n mlflow.autolog()\r\n\r\n # setup parameters\r\n num_boost_round = args.num_boost_round\r\n params = {\r\n \"objective\": \"multiclass\",\r\n \"num_class\": 3,\r\n \"boosting\": args.boosting,\r\n \"num_iterations\": args.num_iterations,\r\n \"num_leaves\": args.num_leaves,\r\n \"num_threads\": args.num_threads,\r\n \"learning_rate\": args.learning_rate,\r\n \"metric\": args.metric,\r\n \"seed\": args.seed,\r\n \"verbose\": args.verbose,\r\n }\r\n\r\n # read in data\r\n df = pd.read_csv(args.iris_csv)\r\n\r\n # process data\r\n X_train, X_test, y_train, y_test, enc = process_data(df)\r\n\r\n # train model\r\n model = train_model(params, num_boost_round, X_train, X_test, y_train, y_test)\r\n\r\n\r\ndef process_data(df):\r\n # split dataframe into X and y\r\n X = df.drop([\"species\"], axis=1)\r\n y = df[\"species\"]\r\n\r\n # encode label\r\n enc = LabelEncoder()\r\n y = enc.fit_transform(y)\r\n\r\n # train/test split\r\n X_train, X_test, y_train, y_test = train_test_split(\r\n X, y, test_size=0.2, random_state=42\r\n )\r\n\r\n # return splits and encoder\r\n return X_train, X_test, y_train, y_test, enc\r\n\r\n\r\ndef train_model(params, num_boost_round, X_train, X_test, y_train, y_test):\r\n # create lightgbm datasets\r\n train_data = lgbm.Dataset(X_train, label=y_train)\r\n test_data = lgbm.Dataset(X_test, label=y_test)\r\n\r\n # train model\r\n model = lgbm.train(\r\n params,\r\n train_data,\r\n num_boost_round=num_boost_round,\r\n valid_sets=[test_data],\r\n valid_names=[\"test\"],\r\n )\r\n\r\n # return model\r\n return model\r\n\r\n\r\ndef parse_args():\r\n # setup arg parser\r\n parser = argparse.ArgumentParser()\r\n\r\n # add arguments\r\n parser.add_argument(\"--iris-csv\", type=str)\r\n parser.add_argument(\"--num-boost-round\", type=int, default=10)\r\n parser.add_argument(\"--boosting\", type=str, default=\"gbdt\")\r\n parser.add_argument(\"--num-iterations\", type=int, default=16)\r\n parser.add_argument(\"--num-leaves\", type=int, default=31)\r\n parser.add_argument(\"--num-threads\", type=int, default=0)\r\n parser.add_argument(\"--learning-rate\", type=float, default=0.1)\r\n parser.add_argument(\"--metric\", type=str, default=\"multi_logloss\")\r\n parser.add_argument(\"--seed\", type=int, default=42)\r\n parser.add_argument(\"--verbose\", type=int, default=0)\r\n\r\n # parse args\r\n args = parser.parse_args()\r\n\r\n # return args\r\n return args\r\n\r\n\r\n# run script\r\nif __name__ == \"__main__\":\r\n # parse args\r\n args = parse_args()\r\n\r\n # run main function\r\n main(args)" | ||
}, | ||
"resources": [ | ||
{ | ||
"type": "Microsoft.Storage/storageAccounts/blobServices/containers", | ||
"apiVersion": "2021-04-01", | ||
"name": "[format('{0}/{1}/{2}', parameters('storageAccountName'), 'default', parameters('containerName'))]", | ||
"properties": { | ||
"publicAccess": "Container" | ||
}, | ||
"dependsOn": [ | ||
"[resourceId('Microsoft.Storage/storageAccounts/blobServices', parameters('storageAccountName'), 'default')]" | ||
] | ||
}, | ||
{ | ||
"type": "Microsoft.Storage/storageAccounts/blobServices", | ||
"apiVersion": "2021-04-01", | ||
"name": "[format('{0}/{1}', parameters('storageAccountName'), 'default')]" | ||
}, | ||
{ | ||
"type": "Microsoft.Resources/deploymentScripts", | ||
"apiVersion": "2020-10-01", | ||
"name": "[format('deployscript-upload-blob-{0}', uniqueString(resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))))]", | ||
"location": "[parameters('location')]", | ||
"kind": "AzureCLI", | ||
"properties": { | ||
"azCliVersion": "2.26.1", | ||
"timeout": "PT5M", | ||
"retentionInterval": "PT1H", | ||
"environmentVariables": [ | ||
{ | ||
"name": "AZURE_STORAGE_ACCOUNT", | ||
"value": "[parameters('storageAccountName')]" | ||
}, | ||
{ | ||
"name": "AZURE_STORAGE_KEY", | ||
"secureValue": "[listKeys(resourceId('Microsoft.Storage/storageAccounts', parameters('storageAccountName')), '2021-04-01').keys[0].value]" | ||
}, | ||
{ | ||
"name": "CONTENT", | ||
"value": "[variables('$fxv#0')]" | ||
} | ||
], | ||
"scriptContent": "[format('echo \"$CONTENT\" > {0} && az storage blob upload -f {1} -c {2} -n {3}', parameters('filename'), parameters('filename'), parameters('containerName'), parameters('filename'))]" | ||
}, | ||
"dependsOn": [ | ||
"[resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))]" | ||
] | ||
}, | ||
{ | ||
"type": "Microsoft.MachineLearningServices/workspaces/codes/versions", | ||
"apiVersion": "2022-05-01", | ||
"name": "[format('{0}/{1}-{2}/{3}', parameters('workspaceName'), parameters('codeId'), uniqueString(resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))), parameters('codeVersion'))]", | ||
"properties": { | ||
"codeUri": "[uri(format('https://{0}.blob.{1}/', parameters('storageAccountName'), environment().suffixes.storage), format('{0}/', parameters('containerName')))]", | ||
"isAnonymous": false | ||
}, | ||
"dependsOn": [ | ||
"[resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))]", | ||
"[resourceId('Microsoft.Resources/deploymentScripts', format('deployscript-upload-blob-{0}', uniqueString(resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName')))))]" | ||
] | ||
} | ||
], | ||
"outputs": { | ||
"codeId": { | ||
"type": "string", | ||
"value": "[resourceId('Microsoft.MachineLearningServices/workspaces/codes/versions', split(format('{0}/{1}-{2}/{3}', parameters('workspaceName'), parameters('codeId'), uniqueString(resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))), parameters('codeVersion')), '/')[0], split(format('{0}/{1}-{2}/{3}', parameters('workspaceName'), parameters('codeId'), uniqueString(resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))), parameters('codeVersion')), '/')[1], split(format('{0}/{1}-{2}/{3}', parameters('workspaceName'), parameters('codeId'), uniqueString(resourceId('Microsoft.Storage/storageAccounts/blobServices/containers', parameters('storageAccountName'), 'default', parameters('containerName'))), parameters('codeVersion')), '/')[2])]" | ||
} | ||
} | ||
} | ||
} | ||
} | ||
], | ||
"outputs": { | ||
"Job_Studio_Endpoint": { | ||
"type": "string", | ||
"value": "[reference(resourceId('Microsoft.MachineLearningServices/workspaces/jobs', split(format('{0}/{1}', parameters('workspaceName'), parameters('jobName')), '/')[0], split(format('{0}/{1}', parameters('workspaceName'), parameters('jobName')), '/')[1])).services.Studio.endpoint]" | ||
} | ||
} | ||
} |
Oops, something went wrong.