This project focuses on classifying skin cancer lesions using the HAM10000 dataset. The goal is to develop a robust deep learning model capable of identifying seven different classes of skin cancer with high accuracy, leveraging image data and metadata provided in the dataset.
1. Melanocytic Nevi (nv)
2. Melanoma (mel)
3. Benign Keratosis-like Lesions (bkl)
4. Basal Cell Carcinoma (bcc)
5. Actinic Keratoses (akiec)
6. Vascular Lesions (vas)
7. Dermatofibroma (df)
Clone the project
git clone https://link-to-project
Download dataset to ./data
directory of project
Install dependencies
pip install
Run model
python main.py