Skip to content

For auto classifying the quality of photos as good and bad by analyzing the left homographies of photos.

Notifications You must be signed in to change notification settings

AnnyKong/rectified-homographies

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

rectified-homographies (Slowglass research)

For auto classifying the quality of photos as good and bad by analyzing the left homographies of photos.

HOW TO RUN

# run with the complete/ dir
python3 ml-complete.py

# run with the incomplete/ dir
python3 ml-incomplete.py

# for a plot showing the distribution of data points
python3 scatter.py

sample output

../processed_dataset/cmp/complete/ 99%
[Rot+Proj] result goods=[4733, 4771, 4775, 4823, 4839, 4845, 4849, 4851, 4853, 4859, 4865, 4867, 4877, 4879, 4919, 4973, 4987, 4993, 4999, 5003, 5013, 5031, 5033, 5037, 5043, 5047, 5053, 5057, 5059, 5067, 5077, 5097, 5141, 5167, 5169, 5179, 5181, 5197, 5201, 5203, 5211, 5215, 5223, 5229,...]
...
[Rot+Proj] Results:
 result good=5919
 result bad=2207
 result border=1806
 result border_good=1408
 result border_bad=398
goods/all =0.5959524768425292

Current indicator

  • goods: [3.75, infty]
  • bads: [-infty, 3.4)
  • border_goods: [3.5, 3.75)
  • border_bads: [3.4, 3.5)

Structure

complete/

  • ml-complete for complete/
  • complete-result.txt results saved
  • json/*10075.json

incomplete/

  • ml-incomplete for incomplete/
    • incomplete-result.txt results saved
    • json/*18873.json

Update log

03/06/2019-03/13/2019

  • Finished:
    • Depth Doc
    • Depth examples
      • On Google Drive
    • Classification of ~500 images
      • On grail server
  • Meeting on Sat notes: Left graph: Color image
Right graph: Depth image
3D Reconstruction: left -> right Blue – close White – far Classify photos into 5 categories:
    • Flip
    • All-Blue
    • Bad: Should be on one plane and no sudden color change, but large or sudden depth 
change(color change in depth graph)
    • Sky-but-not-bad
    • Good
      • Light effect – consistent ok
      • Window – consistent ok

02/27/2019-03/06/2019

  • Updated scripts for it working with complete/ incomplete/
  • Using the following indicators
    • goods: [3.75, infty]
    • bads: [-infty, 3.4)
    • border_goods: [3.5, 3.75)
    • border_bads: [3.4, 3.5)
  • ml-4.py for solely 3.5 and 5
  • ml-5 for borders (border_up= 3.75, border_down = 3.4)
    • ml-complete for complete/
      • complete-result.txt results saved
      • json/*10075.json
    • ml-incomplete for incomplete/
      • incomplete-result.txt results saved
      • json/*18873.json
  • how to run: python3 python/compose.py json/goods_10075.json ../processed_dataset/cmp/complete/ compose/complete/

02/20/2019-02/27/2019

  • Updated to a new way of getting the effect of projection on the distortion of photos
    • (u,v,w) => z’=ux+vy+w
    • (x’,y’,z’) = () * (x,y,1)
    • (u,v,w)=>(u’,v’,1) => sqrt(u’^2+v’^2)
  • Good indicator after test and adjustments:
    • 5, 3.5
  • train/result/ detailed tables
  • train/ classified photo for test
  • Updated to an Insequence version for classification: 1) rotation 2) projective
    • ml-3.py
    • updated peek.py
  • Min max results in table
    • rotation: <5
    • projective: >=3.5
rotation (100) min max
good (73) 0 (2) 5.72 (1)
bad (17) 1.18 (2) 118.73(1)
borderline (10) 0.13 (1) 6.3 (1)
projective (100) min max
good (73) 3.32 (1) 5.59 (1)
bad (17) 2.74 (1) 3.88 (1)
borderline (10) 3.29 (3) 4.47 (1)
  • Not effective
    • may depend on rotation or projective
    • So there may not be overlaps

02/13/2019-02/20/2019

02/06/2019-02/13/2019

  • Read resea rch paper/ wikipedia
  • Computing Rectifying Homographies for Stereo Vision
  • Computer Vision: Algorithms and Applications—Richard Szeliski
  • Homographies
  • affine transformation (translation, scale, shear, rotation)
    • 2d - 3x3
    • 3d - 4x4
    • last col 0 0 1
  • openCV cvtoarray intensity
  • numpy mat
  • projection

About

For auto classifying the quality of photos as good and bad by analyzing the left homographies of photos.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages