YOLOv5 is a family of object detection architectures and models pretrained on the COCO dataset.
Fails to load try using Jupyter notebook
- YOLOv5
- Pytorch
- Import dataset in Roboflow
- Do data preprocessing (Splitting data, Data Augementation) using Roboflow API
- Export generated dataset in YOLOv5 format using API key or download it.
- Download pretrained weights Pretrained_weights/best.pt
- Clone YOLOv5 repository
git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt
python detect.py --weights best.pt --source image.png
- Clone this repository
git clone https://github.com/Anant-mishra1729/Road-sign-detection.git
cd Road-sign-detection
python detect.py --weights best.pt --source image.png
- Clone YOLOv5 repository
git clone https://github.com/ultralytics/yolov5
cd yolov5
- Use Updated_YOLOv5_Road_sign_detection.ipynb for creating model.
- Store best.pt for future inference.
In case of any issue or error go through Yolov5 documentation.
- Anant Mishra
This project is licensed under the MIT License - see the LICENSE.md file for details