Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add lora-embedding bundle system #13568

Merged
merged 6 commits into from
Oct 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 33 additions & 0 deletions extensions-builtin/Lora/lora_logger.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
import sys
import copy
import logging


class ColoredFormatter(logging.Formatter):
COLORS = {
"DEBUG": "\033[0;36m", # CYAN
"INFO": "\033[0;32m", # GREEN
"WARNING": "\033[0;33m", # YELLOW
"ERROR": "\033[0;31m", # RED
"CRITICAL": "\033[0;37;41m", # WHITE ON RED
"RESET": "\033[0m", # RESET COLOR
}

def format(self, record):
colored_record = copy.copy(record)
levelname = colored_record.levelname
seq = self.COLORS.get(levelname, self.COLORS["RESET"])
colored_record.levelname = f"{seq}{levelname}{self.COLORS['RESET']}"
return super().format(colored_record)


logger = logging.getLogger("lora")
logger.propagate = False


if not logger.handlers:
handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(
ColoredFormatter("[%(name)s]-%(levelname)s: %(message)s")
)
logger.addHandler(handler)
1 change: 1 addition & 0 deletions extensions-builtin/Lora/network.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,7 @@ def __init__(self, name, network_on_disk: NetworkOnDisk):
self.unet_multiplier = 1.0
self.dyn_dim = None
self.modules = {}
self.bundle_embeddings = {}
self.mtime = None

self.mentioned_name = None
Expand Down
41 changes: 41 additions & 0 deletions extensions-builtin/Lora/networks.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,9 @@
from typing import Union

from modules import shared, devices, sd_models, errors, scripts, sd_hijack
import modules.textual_inversion.textual_inversion as textual_inversion

from lora_logger import logger

module_types = [
network_lora.ModuleTypeLora(),
Expand Down Expand Up @@ -149,9 +152,19 @@ def load_network(name, network_on_disk):
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping

matched_networks = {}
bundle_embeddings = {}

for key_network, weight in sd.items():
key_network_without_network_parts, network_part = key_network.split(".", 1)
if key_network_without_network_parts == "bundle_emb":
emb_name, vec_name = network_part.split(".", 1)
emb_dict = bundle_embeddings.get(emb_name, {})
if vec_name.split('.')[0] == 'string_to_param':
_, k2 = vec_name.split('.', 1)
emb_dict['string_to_param'] = {k2: weight}
else:
emb_dict[vec_name] = weight
bundle_embeddings[emb_name] = emb_dict

key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
Expand Down Expand Up @@ -195,6 +208,14 @@ def load_network(name, network_on_disk):

net.modules[key] = net_module

embeddings = {}
for emb_name, data in bundle_embeddings.items():
embedding = textual_inversion.create_embedding_from_data(data, emb_name, filename=network_on_disk.filename + "/" + emb_name)
embedding.loaded = None
embeddings[emb_name] = embedding

net.bundle_embeddings = embeddings

if keys_failed_to_match:
logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}")

Expand All @@ -210,11 +231,15 @@ def purge_networks_from_memory():


def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
emb_db = sd_hijack.model_hijack.embedding_db
already_loaded = {}

for net in loaded_networks:
if net.name in names:
already_loaded[net.name] = net
for emb_name, embedding in net.bundle_embeddings.items():
if embedding.loaded:
emb_db.register_embedding_by_name(None, shared.sd_model, emb_name)

loaded_networks.clear()

Expand Down Expand Up @@ -257,6 +282,21 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
loaded_networks.append(net)

for emb_name, embedding in net.bundle_embeddings.items():
if embedding.loaded is None and emb_name in emb_db.word_embeddings:
logger.warning(
f'Skip bundle embedding: "{emb_name}"'
' as it was already loaded from embeddings folder'
)
continue

embedding.loaded = False
if emb_db.expected_shape == -1 or emb_db.expected_shape == embedding.shape:
embedding.loaded = True
emb_db.register_embedding(embedding, shared.sd_model)
else:
emb_db.skipped_embeddings[name] = embedding

if failed_to_load_networks:
sd_hijack.model_hijack.comments.append("Networks not found: " + ", ".join(failed_to_load_networks))

Expand Down Expand Up @@ -565,6 +605,7 @@ def infotext_pasted(infotext, params):
available_networks = {}
available_network_aliases = {}
loaded_networks = []
loaded_bundle_embeddings = {}
networks_in_memory = {}
available_network_hash_lookup = {}
forbidden_network_aliases = {}
Expand Down
74 changes: 40 additions & 34 deletions modules/textual_inversion/textual_inversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,40 +181,7 @@ def load_from_file(self, path, filename):
else:
return


# textual inversion embeddings
if 'string_to_param' in data:
param_dict = data['string_to_param']
param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
vec = emb.detach().to(devices.device, dtype=torch.float32)
shape = vec.shape[-1]
vectors = vec.shape[0]
elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding
vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()}
shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1]
vectors = data['clip_g'].shape[0]
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'

emb = next(iter(data.values()))
if len(emb.shape) == 1:
emb = emb.unsqueeze(0)
vec = emb.detach().to(devices.device, dtype=torch.float32)
shape = vec.shape[-1]
vectors = vec.shape[0]
else:
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")

embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
embedding.vectors = vectors
embedding.shape = shape
embedding.filename = path
embedding.set_hash(hashes.sha256(embedding.filename, "textual_inversion/" + name) or '')
embedding = create_embedding_from_data(data, name, filename=filename, filepath=path)

if self.expected_shape == -1 or self.expected_shape == embedding.shape:
self.register_embedding(embedding, shared.sd_model)
Expand Down Expand Up @@ -313,6 +280,45 @@ def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
return fn


def create_embedding_from_data(data, name, filename='unknown embedding file', filepath=None):
if 'string_to_param' in data: # textual inversion embeddings
param_dict = data['string_to_param']
param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
vec = emb.detach().to(devices.device, dtype=torch.float32)
shape = vec.shape[-1]
vectors = vec.shape[0]
elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding
vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()}
shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1]
vectors = data['clip_g'].shape[0]
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'

emb = next(iter(data.values()))
if len(emb.shape) == 1:
emb = emb.unsqueeze(0)
vec = emb.detach().to(devices.device, dtype=torch.float32)
shape = vec.shape[-1]
vectors = vec.shape[0]
else:
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")

embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
embedding.vectors = vectors
embedding.shape = shape

if filepath:
embedding.filename = filepath
embedding.set_hash(hashes.sha256(filepath, "textual_inversion/" + name) or '')

return embedding


def write_loss(log_directory, filename, step, epoch_len, values):
if shared.opts.training_write_csv_every == 0:
return
Expand Down