Code repository for the paper "Characterizing Data Point Vulnerability via Average-Case Robustness (UAI 2024) by Tessa Han*, Suraj Srinivas*, and Hima Lakkaraju".
Average-case robustness (
The estimators
folder. A demonstration of how to use each estimator can be found in calc_p_robust.py
. To run calc_p_robust.py
:
- Navigate into the
average-case-robustness
repo - Run
$ python calc_p_robust.py
This will print the following output (numbers may vary):
--> load data
Files already downloaded and verified
--> load model
--> calculate p_robust
p_mc: [0.78, 0.88, 0.3, 0.36, 1.0, 1.0, 0.98, 1.0]
p_tay: [1.0, 0.99, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
p_tay_mvs: [1.0, 0.92, 0.92, 0.94, 1.0, 0.97, 0.88, 0.94]
p_mmse: [0.96, 0.79, 0.13, 0.12, 1.0, 1.0, 1.0, 1.0]
p_mmse_mvs: [0.84, 0.62, 0.2, 0.18, 1.0, 1.0, 0.95, 0.99]
p_softmax: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
complete!
@inproceedings{averagecaserob2024,
title={Characterizing Data Point Vulnerability via Average Case Robustness},
author={Han*, Tessa, and Srinivas*, Suraj, and Lakkaraju, Himabindu},
booktitle={Conference on Uncertainty in Artificial Intelligence (UAI)},
year={2024}
}