Skip to content

Commit

Permalink
Major lora refactor: works on my machine edition
Browse files Browse the repository at this point in the history
  • Loading branch information
AI-Casanova committed Nov 24, 2024
1 parent 2b14727 commit cb561fa
Show file tree
Hide file tree
Showing 21 changed files with 2,225 additions and 7 deletions.
14 changes: 7 additions & 7 deletions extensions-builtin/Lora/scripts/lora_script.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
from network import NetworkOnDisk
from ui_extra_networks_lora import ExtraNetworksPageLora
from extra_networks_lora import ExtraNetworkLora
from modules import script_callbacks, extra_networks, ui_extra_networks, ui_models # pylint: disable=unused-import
from modules import script_callbacks, extra_networks, ui_extra_networks, ui_models, shared # pylint: disable=unused-import


re_lora = re.compile("<lora:([^:]+):")
Expand Down Expand Up @@ -56,9 +56,9 @@ def network_replacement(m):
hashes = {x[0].strip().replace(",", ""): x[1].strip() for x in hashes}
d["Prompt"] = re.sub(re_lora, network_replacement, d["Prompt"])


script_callbacks.on_app_started(api_networks)
script_callbacks.on_before_ui(before_ui)
script_callbacks.on_model_loaded(networks.assign_network_names_to_compvis_modules)
script_callbacks.on_infotext_pasted(networks.infotext_pasted)
script_callbacks.on_infotext_pasted(infotext_pasted)
if not shared.native:
script_callbacks.on_app_started(api_networks)
script_callbacks.on_before_ui(before_ui)
script_callbacks.on_model_loaded(networks.assign_network_names_to_compvis_modules)
script_callbacks.on_infotext_pasted(networks.infotext_pasted)
script_callbacks.on_infotext_pasted(infotext_pasted)
151 changes: 151 additions & 0 deletions modules/lora/extra_networks_lora.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
import re
import time
import numpy as np
import modules.lora.networks as networks
from modules import extra_networks, shared

# from https://github.com/cheald/sd-webui-loractl/blob/master/loractl/lib/utils.py
def get_stepwise(param, step, steps):
def sorted_positions(raw_steps):
steps = [[float(s.strip()) for s in re.split("[@~]", x)]
for x in re.split("[,;]", str(raw_steps))]
if len(steps[0]) == 1: # If we just got a single number, just return it
return steps[0][0]
steps = [[s[0], s[1] if len(s) == 2 else 1] for s in steps] # Add implicit 1s to any steps which don't have a weight
steps.sort(key=lambda k: k[1]) # Sort by index
steps = [list(v) for v in zip(*steps)]
return steps

def calculate_weight(m, step, max_steps, step_offset=2):
if isinstance(m, list):
if m[1][-1] <= 1.0:
step = step / (max_steps - step_offset) if max_steps > 0 else 1.0
v = np.interp(step, m[1], m[0])
return v
else:
return m

stepwise = calculate_weight(sorted_positions(param), step, steps)
return stepwise


def prompt(p):
if shared.opts.lora_apply_tags == 0:
return
all_tags = []
for loaded in networks.loaded_networks:
page = [en for en in shared.extra_networks if en.name == 'lora'][0]
item = page.create_item(loaded.name)
tags = (item or {}).get("tags", {})
loaded.tags = list(tags)
if len(loaded.tags) == 0:
loaded.tags.append(loaded.name)
if shared.opts.lora_apply_tags > 0:
loaded.tags = loaded.tags[:shared.opts.lora_apply_tags]
all_tags.extend(loaded.tags)
if len(all_tags) > 0:
shared.log.debug(f"Load network: type=LoRA tags={all_tags} max={shared.opts.lora_apply_tags} apply")
all_tags = ', '.join(all_tags)
p.extra_generation_params["LoRA tags"] = all_tags
if '_tags_' in p.prompt:
p.prompt = p.prompt.replace('_tags_', all_tags)
else:
p.prompt = f"{p.prompt}, {all_tags}"
if p.all_prompts is not None:
for i in range(len(p.all_prompts)):
if '_tags_' in p.all_prompts[i]:
p.all_prompts[i] = p.all_prompts[i].replace('_tags_', all_tags)
else:
p.all_prompts[i] = f"{p.all_prompts[i]}, {all_tags}"


def infotext(p):
names = [i.name for i in networks.loaded_networks]
if len(names) > 0:
p.extra_generation_params["LoRA networks"] = ", ".join(names)
if shared.opts.lora_add_hashes_to_infotext:
network_hashes = []
for item in networks.loaded_networks:
if not item.network_on_disk.shorthash:
continue
network_hashes.append(item.network_on_disk.shorthash)
if len(network_hashes) > 0:
p.extra_generation_params["LoRA hashes"] = ", ".join(network_hashes)


def parse(p, params_list, step=0):
names = []
te_multipliers = []
unet_multipliers = []
dyn_dims = []
for params in params_list:
assert params.items
names.append(params.positional[0])
te_multiplier = params.named.get("te", params.positional[1] if len(params.positional) > 1 else shared.opts.extra_networks_default_multiplier)
if isinstance(te_multiplier, str) and "@" in te_multiplier:
te_multiplier = get_stepwise(te_multiplier, step, p.steps)
else:
te_multiplier = float(te_multiplier)
unet_multiplier = [params.positional[2] if len(params.positional) > 2 else te_multiplier] * 3
unet_multiplier = [params.named.get("unet", unet_multiplier[0])] * 3
unet_multiplier[0] = params.named.get("in", unet_multiplier[0])
unet_multiplier[1] = params.named.get("mid", unet_multiplier[1])
unet_multiplier[2] = params.named.get("out", unet_multiplier[2])
for i in range(len(unet_multiplier)):
if isinstance(unet_multiplier[i], str) and "@" in unet_multiplier[i]:
unet_multiplier[i] = get_stepwise(unet_multiplier[i], step, p.steps)
else:
unet_multiplier[i] = float(unet_multiplier[i])
dyn_dim = int(params.positional[3]) if len(params.positional) > 3 else None
dyn_dim = int(params.named["dyn"]) if "dyn" in params.named else dyn_dim
te_multipliers.append(te_multiplier)
unet_multipliers.append(unet_multiplier)
dyn_dims.append(dyn_dim)
return names, te_multipliers, unet_multipliers, dyn_dims


class ExtraNetworkLora(extra_networks.ExtraNetwork):

def __init__(self):
super().__init__('lora')
self.active = False
self.model = None
self.errors = {}

def activate(self, p, params_list, step=0):
t0 = time.time()
self.errors.clear()
if self.active:
if self.model != shared.opts.sd_model_checkpoint: # reset if model changed
self.active = False
if len(params_list) > 0 and not self.active: # activate patches once
shared.log.debug(f'Activate network: type=LoRA model="{shared.opts.sd_model_checkpoint}"')
self.active = True
self.model = shared.opts.sd_model_checkpoint
names, te_multipliers, unet_multipliers, dyn_dims = parse(p, params_list, step)
networks.load_networks(names, te_multipliers, unet_multipliers, dyn_dims)
t1 = time.time()
if len(networks.loaded_networks) > 0 and step == 0:
infotext(p)
prompt(p)
shared.log.info(f'Load network: type=LoRA apply={[n.name for n in networks.loaded_networks]} te={te_multipliers} unet={unet_multipliers} dims={dyn_dims} load={t1-t0:.2f}')

def deactivate(self, p):
t0 = time.time()
if shared.native and len(networks.diffuser_loaded) > 0:
if hasattr(shared.sd_model, "unload_lora_weights") and hasattr(shared.sd_model, "text_encoder"):
if not (shared.compiled_model_state is not None and shared.compiled_model_state.is_compiled is True):
try:
if shared.opts.lora_fuse_diffusers:
shared.sd_model.unfuse_lora()
shared.sd_model.unload_lora_weights() # fails for non-CLIP models
except Exception:
pass
t1 = time.time()
networks.timer['restore'] += t1 - t0
if self.active and networks.debug:
shared.log.debug(f"Network end: type=LoRA load={networks.timer['load']:.2f} apply={networks.timer['apply']:.2f} restore={networks.timer['restore']:.2f}")
if self.errors:
for k, v in self.errors.items():
shared.log.error(f'LoRA: name="{k}" errors={v}')
self.errors.clear()
8 changes: 8 additions & 0 deletions modules/lora/lora.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# import networks
#
# list_available_loras = networks.list_available_networks
# available_loras = networks.available_networks
# available_lora_aliases = networks.available_network_aliases
# available_lora_hash_lookup = networks.available_network_hash_lookup
# forbidden_lora_aliases = networks.forbidden_network_aliases
# loaded_loras = networks.loaded_networks
Loading

0 comments on commit cb561fa

Please sign in to comment.