Skip to content

1JKW1/Structural-Magnetic-Resonance-Imaging-sMRI-Pre-processing-Pipeline

 
 

Repository files navigation

Structural Magnetic Resonance Imaging (sMRI) Pre-processing Pipeline

Citation

If you are using this repository, please cite this article Li Q, Yang MQ. 2021. Comparison of machine learning approaches for enhancing Alzheimer’s disease classification. PeerJ 9:e10549 https://doi.org/10.7717/peerj.10549

Introduction

sMRI pre-processing including four steps:

  • Data transformation, from DICOM to NifTi. (Skip this step if your data is in NifTi format already.)
  • Bias field correction or intensity normalization.
  • Skull-stripping or brain extraction.
  • Registration.

For a better understanding of sMRI pre-pressing, please check this free course on Coursera: https://www.coursera.org/learn/neurohacking

Data

The example data we used in this repository are from the Alzheimer's Disease Neuroimaging Initiative database (ADNI, http://adni.loni.usc.edu).

Approaches

Instructions

1. Data transformation

#Usage: 
Rscript Scripts/dim2nii.R input/file/folder/path output/folder/file_prelix
#For example: 
Rscript Scripts/dim2nii.R 0.ADNI_raw_data/S29070 1.Transformation/S29070
#With Singularity: 
singularity exec preprocess.img Rscript Scripts/dim2nii.R 0.ADNI_raw_data/S623901 1.Transformation/S623901

2. Bias field correction

#Usage: 
nohup ./Scripts/correction.sh input/image/path output_folder
#For example: 
nohup ./Scripts/correction.sh 1.Transformation/S623901.nii.gz 2.Correction
#With Singularity: 
singularity exec preprocess.img ./Scripts/correction.sh 1.Transformation/S623901.nii.gz 2.Correction

3. Skull-stripping and Registration

#Usage: 
nohup Scripts/bet_n_reg.R corrected/image/path template/image/path brian_extraction/output_folder/prefix-bet registration/output_folder/prefix-reg
#For example: 
Rscript Scripts/bet_n_reg.R 2.Correction/S623901-cor.nii.gz template/resized_template110_110_110.nii.gz  3.BrianExtraction/S623901-bet 4.Registration/S623901-reg
#With Singularity: 
singularity exec preprocess.img Rscript Scripts/bet_n_reg.R 2.Correction/S623901-cor.nii.gz template/resized_template110_110_110.nii.gz  3.BrianExtraction/S623901-bet 4.Registration/S623901-reg

The downstream analysis like image classification and discriminative visualization are also provided, please check this link.

About

Structural Magnetic Resonance Imaging (sMRI) Pre-processing Pipeline

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 74.5%
  • Shell 25.5%